精英家教網 > 初中數學 > 題目詳情
如圖已知O是坐標原點,B、C兩點的坐標分別為(3,-1)、(2,1)
(1)畫出以O點為旋轉中心逆時針旋轉90度得到的△B′OC′,并寫出B、C兩點的對應點B′、C′的坐標;
(2)求點C旋轉到點C′所經過的路線長(結果保留π).
分析:(1)根據旋轉中心為O、旋轉角度為90°,旋轉方向為逆時針,找到各點的對應點,順次連接即可,結合直角坐標系可得出B′、C′的坐標.
(2)點C旋轉到點C′所經過的路線長,是以點O為圓心,以OC為半徑的扇形的弧長.
解答:解:(1)所作圖形如下:

結合直角坐標系可得:B′(1,3),C′(-1,2),

(2)由圖形可得:OC=
22+12
=
5
,
故點C旋轉到點C′所經過的路線長=
nπR
180
=
90°πR
180°
=
5
π
2
點評:本題考查了旋轉作圖及弧長的計算,作圖的關鍵是根據旋轉的性質得到各點的對稱點,求路線長關鍵是利用弧長的計算公式.
練習冊系列答案
相關習題

科目:初中數學 來源:2012-2013學年江蘇省揚州市邗江區(qū)八年級下學期期中考試數學試卷(帶解析) 題型:解答題

如圖,已知O是坐標原點,B、C兩點的坐標分別為(3,-1)、(2,1).

(1)以0點為位似中心在y軸的左側將△OBC放大到兩倍(即新圖與原圖的相似比為2),畫出圖形;
(2)分別寫出B、C兩點的對應點B′、C′的坐標;
(3)如果△OBC內部一點M的坐標為(x,y),寫出M的對應點M′的坐標.

查看答案和解析>>

科目:初中數學 來源:2014屆江蘇省揚州市邗江區(qū)八年級下學期期中考試數學試卷(解析版) 題型:解答題

如圖,已知O是坐標原點,B、C兩點的坐標分別為(3,-1)、(2,1).

(1)以0點為位似中心在y軸的左側將△OBC放大到兩倍(即新圖與原圖的相似比為2),畫出圖形;

(2)分別寫出B、C兩點的對應點B′、C′的坐標;

(3)如果△OBC內部一點M的坐標為(x,y),寫出M的對應點M′的坐標.

 

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖已知O是坐標原點,B、C兩點的坐標分別為(3,-1)、(2,1)
(1)畫出以O點為旋轉中心逆時針旋轉90度得到的△B′OC′,并寫出B、C兩點的對應點B′、C′的坐標;
(2)求點C旋轉到點C′所經過的路線長(結果保留π).

查看答案和解析>>

科目:初中數學 來源:2011-2012學年貴州省遵義市正安縣九年級(上)期末數學試卷(解析版) 題型:解答題

如圖已知O是坐標原點,B、C兩點的坐標分別為(3,-1)、(2,1)
(1)畫出以O點為旋轉中心逆時針旋轉90度得到的△B′OC′,并寫出B、C兩點的對應點B′、C′的坐標;
(2)求點C旋轉到點C′所經過的路線長(結果保留π).

查看答案和解析>>

同步練習冊答案