【題目】如圖,等邊三角形ABC中,E是線段AC上一點(diǎn),F是BC延長(zhǎng)線上一點(diǎn).連接BE,AF.點(diǎn)G是線段BE的中點(diǎn),BN∥AC,BN與AG延長(zhǎng)線交于點(diǎn)N.
(1)若∠BAN=15°,求∠N;
(2)若AE=CF,求證:2AG=AF.
【答案】(1)45°;(2)見(jiàn)解析
【解析】
(1)由等邊三角形的性質(zhì)可知∠ABC=∠ACB=60°,由平行線的性質(zhì)可知∠NBC=60°,進(jìn)一步求出∠ABN=120°,再由三角形內(nèi)角和定理即可求出∠N的度數(shù);
(2)先證△NBG≌△AEG,得到AG=NG,AE=BN,再證△ABN≌△ACF,即可推出AF=2AG.
解:(1)∵△ABC是等邊三角形,
∴∠ABC=∠ACB=60°,
∵AC∥BN,
∴∠NBC=∠ACB=60°,
∴∠ABN=∠ABC+∠NBC=120°,
∴在△ABN中,
∠N=180°﹣∠ABN﹣∠BAN=180°﹣120°﹣15°=45°;
(2)∵AC∥BN,
∴∠N=∠GAE,∠NBG=∠AEG,
又∵點(diǎn)G是線段BE的中點(diǎn),
∴BG=EG,
∴△NBG≌△AEG(AAS),
∴AG=NG,AE=BN,
∵AE=CF,
∴BN=CF,
∵∠ACB=60°,
∴∠ACF=180°﹣∠ACB=120°,
∴∠ABN=∠ACF,
又∵AB=AC,
∴△ABN≌△ACF(SAS),
∴AF=AN,
∵AG=NG=AN,
∴AF=2AG.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知數(shù)軸上的點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為,點(diǎn)到點(diǎn)、點(diǎn)的距離相等,動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為(大于秒.
(1)點(diǎn)表示的數(shù)是______.
(2)求當(dāng)等于多少秒時(shí),點(diǎn)到達(dá)點(diǎn)處?
(3)點(diǎn)表示的數(shù)是______(用含字母的式子表示)
(4)求當(dāng)等于多少秒時(shí),、之間的距離為個(gè)單位長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:A=2x2+ax﹣5y+b,B=bx2﹣x﹣y﹣3.
(1)求3A﹣(4A﹣2B)的值;
(2)當(dāng)x取任意數(shù)值,A﹣2B的值是一個(gè)定值時(shí),求(a+A)﹣(2b+B)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=10厘米,∠B=∠C,BC=8厘米,點(diǎn)D為AB的中點(diǎn),如果點(diǎn)P在線段BC上以3厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為 時(shí),能夠在某一時(shí)刻使△BPD與△CQP全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下列推理過(guò)程:
已知:如圖,∠1+∠2=180°,∠3=∠B
求證:∠EDG+∠DGC=180°
證明:∵∠1+∠2=180°(已知)
∠1+∠DFE=180°( )
∴∠2= ( )
∴EF∥AB( )
∴∠3= ( )
又∵∠3=∠B(已知)
∴∠B=∠ADE( )
∴DE∥BC( )
∴∠EDG+∠DGC=180°( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新知識(shí)一般有兩類(lèi):第一類(lèi)是一般不依賴(lài)于其他知識(shí)的新知識(shí),如“數(shù)”,“字母表示數(shù)”這樣的初始性知識(shí);第二類(lèi)是在某些舊知識(shí)的基礎(chǔ)上聯(lián)系,拓展等方式產(chǎn)生的知識(shí),大多數(shù)知識(shí)是這一類(lèi).
(1)多項(xiàng)式乘多項(xiàng)式的法則,是第幾類(lèi)知識(shí)?
(2)在多項(xiàng)式乘多項(xiàng)式之前,我們學(xué)習(xí)了哪些有關(guān)的知識(shí)?(寫(xiě)出三條即可)
(3)請(qǐng)你用已有的知識(shí),從數(shù)和形兩個(gè)方面說(shuō)明多項(xiàng)式乘多項(xiàng)式法則,用(a+b)(a-b)來(lái)說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為弘揚(yáng)中華傳統(tǒng)文化,我市某中學(xué)決定根據(jù)學(xué)生的興趣愛(ài)好組建課外興趣小組,因此學(xué)校隨機(jī)抽取了部分同學(xué)的興趣愛(ài)好進(jìn)行調(diào)查,將收集的數(shù)據(jù)整理并繪制成下列兩幅統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,完成下列問(wèn)題:
(1)學(xué)校這次調(diào)查共抽取了 名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,“戲曲”所在扇形的圓心角度數(shù)為 ;
(4)設(shè)該校共有學(xué)生2000名,請(qǐng)你估計(jì)該校有多少名學(xué)生喜歡書(shū)法?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:點(diǎn)C在直線AB上,AC=8cm,BC=6cm,點(diǎn)M、N分別是AC、BC的中點(diǎn),求線段MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在生活中,人們經(jīng)常通過(guò)一些標(biāo)志性建筑確定位置,在數(shù)學(xué)中往往也是這樣.
(1)將正整數(shù)如圖1的方式進(jìn)行排列:
小明同學(xué)通過(guò)仔細(xì)觀察,發(fā)現(xiàn)每一行第一列的數(shù)字有一定的規(guī)律,所以每一行第一列的數(shù)字可以作為標(biāo)志數(shù),于是他認(rèn)為第七行第一列的數(shù)字是 ,第7行、第5列的數(shù)字是 .
(2)方法應(yīng)用
觀察下面一列數(shù):1,﹣2,3,﹣4,5,﹣6,7,…并將這列數(shù)按照如圖2方式進(jìn)行排列:
按照上述方式排列下去,
問(wèn)題1:第10行從左邊數(shù)第9個(gè)數(shù)是 ;
問(wèn)題2:第n行有 個(gè)數(shù);(用含n的代數(shù)式表示)
問(wèn)題3:數(shù)字2019在第 行,從左邊數(shù)第 個(gè)數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com