【題目】在平面直角坐標(biāo)系中,已知拋物線經(jīng)過(guò),,三點(diǎn).
求拋物線的解析式;
若點(diǎn)M為第三象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為m,的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是直線上的動(dòng)點(diǎn),判斷有幾個(gè)位置能夠使得點(diǎn)P、Q、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).
【答案】(1)拋物線的解析式為 y=x+x-4;(2)S= =-(m+2)2+4,4;(3)Q(-4,4)或(-2+2,2-2)或(-2-2,2+2)或(4,-4)
【解析】
(1)先假設(shè)出函數(shù)解析式,利用三點(diǎn)法求解函數(shù)解析式.
(2)設(shè)出M點(diǎn)的坐標(biāo),利用S=S△AOM+S△OBM-S△AOB即可進(jìn)行解答;
(3)當(dāng)OB是平行四邊形的邊時(shí),表示出PQ的長(zhǎng),再根據(jù)平行四邊形的對(duì)邊相等列出方程求解即可;當(dāng)OB是對(duì)角線時(shí),由圖可知點(diǎn)A與P應(yīng)該重合.
(1)設(shè)此拋物線的函數(shù)解析式為:y=ax2+bx+c(a≠0),
將A(﹣4,0),B(0,﹣4),C(2,0)三點(diǎn)代入函數(shù)解析式得:
,解得,
所以此函數(shù)解析式為:y=x2+x﹣4;
(2)∵M點(diǎn)的橫坐標(biāo)為m,且點(diǎn)M在這條拋物線上,
∴M點(diǎn)的坐標(biāo)為:(m,m2+m﹣4),
∴S=S△AOM+S△OBM﹣S△AOB
=×4×(﹣m2﹣m+4)+×4×(﹣m)﹣×4×4
=﹣m2﹣2m+8﹣2m﹣8
=﹣m2﹣4m,
=﹣(m+2)2+4,
∵﹣4<m<0,
當(dāng)m=﹣2時(shí),S有最大值為:S=﹣4+8=4.
答:m=﹣2時(shí),S有最大值,S=4.
(3)設(shè)P(x, x2+x﹣4).
當(dāng)OB為邊時(shí),根據(jù)平行四邊形的性質(zhì)知PQ∥OB,且PQ=OB,
∴Q的橫坐標(biāo)等于P的橫坐標(biāo),
又∵直線的解析式為y=﹣x,
則Q(x,﹣x).
由PQ=OB,得|﹣x﹣(x2+x﹣4)|=4,
解得x=0,﹣4,﹣2±2.
x=0不合題意,舍去.
如圖,當(dāng)BO為對(duì)角線時(shí),知A與P應(yīng)該重合,OP=4.四邊形PBQO為平行四邊形則BQ=OP=4,Q橫坐標(biāo)為4,代入y=﹣x得出Q為(4,﹣4).
由此可得Q(4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)或(4,﹣4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將自然數(shù)按照下表進(jìn)行排列:
用表示第行第列數(shù),例如表示第4行第3列數(shù)是29.)
(1)已知,_________,___________;
(2)將圖中5個(gè)陰影方格看成一個(gè)整體并在表格內(nèi)平移,所覆蓋的5個(gè)自然數(shù)之和能否為2021?若能,求出這個(gè)整體中左上角最小的數(shù);若不能,請(qǐng)說(shuō)明理由;
(3)用含的代數(shù)式表示_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校七年級(jí)學(xué)生在農(nóng)場(chǎng)進(jìn)行社會(huì)實(shí)踐勞動(dòng)時(shí),采摘了黃瓜和茄子共千克,了解到采摘的這部分黃瓜和茄子的種植成本共元,還了解到如下信息:黃瓜的種植成本是元/千克,售價(jià)是元/千克;茄子的種植成本是元/千克,售價(jià)是元/千克.
(1)求采摘的黃瓜和茄子各多少千克?
(2)這些采摘的黃瓜和茄子全部賣出可賺多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y1=﹣x2+2向右平移1個(gè)單位得到拋物線y2,則圖中陰影部分的面積是( 。
A. 2B. 3C. 4D. 無(wú)法計(jì)算
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校八年級(jí)全體同學(xué)參加了某項(xiàng)捐款活動(dòng),隨機(jī)抽查了部分同學(xué)捐款的情況統(tǒng)計(jì)如圖所示
(1)本次共抽查學(xué)生____人,并將條形圖補(bǔ)充完整;
(2)捐款金額的眾數(shù)是_____,平均數(shù)是_____;
(3)在八年級(jí)700名學(xué)生中,捐款20元及以上(含20元)的學(xué)生估計(jì)有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將連續(xù)的奇數(shù)1、3、5、7、…、,按一定規(guī)律排成如表:
圖中的T字框框住了四個(gè)數(shù)字,若將T字框上下左右移動(dòng),按同樣的方式可框住另外的四個(gè)數(shù), 若將T字框上下左右移動(dòng),則框住的四個(gè)數(shù)的和不可能得到的數(shù)是( )
A.22B.70C.182D.206
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸上A,B兩點(diǎn)對(duì)應(yīng)的有理數(shù)分別為10和15,點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)Q同時(shí)從原點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸正方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)0<t<5時(shí),用含t的式子填空:
BP=_______,AQ=_______;
(2)當(dāng)t=2時(shí),求PQ的值;
(3)當(dāng)PQ=AB時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,AD⊥BC于點(diǎn)D,點(diǎn)O是AC邊上一點(diǎn),連接BO,交AD于點(diǎn)F,OE⊥OB交BC于點(diǎn)E.
(1)如圖1,當(dāng)O為邊AC中點(diǎn),時(shí),求的值.小明這樣想的,過(guò)O點(diǎn)作OH∥AB交BC于點(diǎn)H,可證△AOF∽△HOE,于是求出答案,請(qǐng)你直接寫出答案 ;
(2)如圖2,當(dāng)O為邊AC中點(diǎn),時(shí),請(qǐng)求出的值,并說(shuō)明理由;
(3)如圖3,當(dāng),時(shí),請(qǐng)直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的一元二次方程ax2+bx﹣1=0(a≠0)有一根為x=2019,則一元二次方程a(x﹣1)2+b(x﹣1)=1必有一根為( 。
A.B.2020C.2019D.2018
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com