【題目】某校八年級全體同學(xué)參加了某項捐款活動,隨機抽查了部分同學(xué)捐款的情況統(tǒng)計如圖所示
(1)本次共抽查學(xué)生____人,并將條形圖補充完整;
(2)捐款金額的眾數(shù)是_____,平均數(shù)是_____;
(3)在八年級700名學(xué)生中,捐款20元及以上(含20元)的學(xué)生估計有多少人?
【答案】(1)50;補圖見解析;(2)10,13.1;(3)154人.
【解析】
(1)有題意可知,捐款15元的有14人,占捐款總?cè)藬?shù)的28%,由此可得總?cè)藬?shù),將捐款總?cè)藬?shù)減去捐款5、15、20、25元的人數(shù)可得捐10元的人數(shù);
(2)從條形統(tǒng)計圖中可知,捐款10元的人數(shù)最多,可知眾數(shù),將50人的捐款總額除以總?cè)藬?shù)可得平均數(shù);
(3)由抽取的樣本可知,用捐款20及以上的人數(shù)所占比例估計總體中的人數(shù).
(1)本次抽查的學(xué)生有:14÷28%=50(人),
則捐款10元的有50﹣9﹣14﹣7﹣4=16(人),補全條形統(tǒng)計圖圖形如下:
故答案為:50;
(2)由條形圖可知,捐款10元人數(shù)最多,故眾數(shù)是10;
這組數(shù)據(jù)的平均數(shù)為: =13.1;
故答案為:10,13.1.
(3)捐款20元及以上(含20元)的學(xué)生有:×700=154(人);
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)(x>0)的圖象與一次函數(shù)y=3x的圖象相交于點A,其橫坐標(biāo)為2.
(1)求k的值;
(2)點B為此反比例函數(shù)圖象上一點,其縱坐標(biāo)為3.過點B作CB∥OA,交x軸于點C,求點C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,且是的中點
(1)求證:四邊形是平行四邊形。
(2)求證:四邊形是菱形。
(3)如果時,求四邊形ADBE的面積
(4)當(dāng) 度時,四邊形是正方形(不證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=2x+4與x軸交于點A,與y軸交于點B,過點B的直線交x軸于C,且△ABC面積為10.
(1)求點C的坐標(biāo)及直線BC的解析式;
(2)如圖1,設(shè)點F為線段AB中點,點G為y軸上一動點,連接FG,以FG為邊向FG右側(cè)作正方形FGQP,在G點的運動過程中,當(dāng)頂點Q落在直線BC上時,求點G的坐標(biāo);
(3)如圖2,若M為線段BC上一點,且滿足S△AMB=S△AOB,點E為直線AM上一動點,在x軸上是否存在點D,使以點D,E,B,C為頂點的四邊形為平行四邊形?若存在,請直接寫出點D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標(biāo)是(3,0),點C的坐標(biāo)是(0,-3),動點P在拋物線上.
(1)b =_________,c =_________,點B的坐標(biāo)為_____________;(直接填寫結(jié)果)
(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標(biāo);若不存在,說明理由;
(3)過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長度最短時,求出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠現(xiàn)有種原料,種原料,現(xiàn)計劃用這兩種原料生產(chǎn),兩個品種的飲料,已知生產(chǎn)每千克品種的飲料需要種原料,種原料,可獲利元,生產(chǎn)每千克品種的飲料只需要種原料,可獲利3千元,兩種原料正好用完.
(1)生產(chǎn)品種的飲料________千克.
(2)生產(chǎn)品種的飲料使用種原料多少千克?
(3)該廠共獲利多少元?(用含,的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系中, 是坐標(biāo)原點,點A(2,5)在反比例函數(shù)的圖象上.一次函數(shù)的圖象過點A,且與反比例函數(shù)圖象的另一交點為B.
(1)求和的值;
(2)設(shè)反比例函數(shù)值為,一次函數(shù)值為,求時的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點O是邊BC的中點,連接DO并延長,交AB延長線于點E,連接BD,EC.
(1)求證:四邊形BECD是平行四邊形;
(2)當(dāng)∠A=50°,∠BOD=100°時,判斷四邊形BECD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=10,sinA=,CD為AB邊上的中線,以點B為圓心,r為半徑作⊙B.如果⊙B與中線CD有且只有一個公共點,那么⊙B的半徑r的取值范圍為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com