【題目】已知點(diǎn)A在數(shù)軸上對(duì)應(yīng)的數(shù)為a,點(diǎn)B對(duì)應(yīng)的數(shù)為b,且|a+4|+(b﹣1)2=0,A、B之間的距離記作|AB|,定義:|AB|=|a﹣b|.

(1)求線段AB的長|AB|;

(2)設(shè)點(diǎn)P在數(shù)軸上對(duì)應(yīng)的數(shù)為x,當(dāng)|PA|﹣|PB|=2時(shí),求x的值;

(3)若點(diǎn)PA的左側(cè),M、N分別是PA、PB的中點(diǎn),當(dāng)PA的左側(cè)移動(dòng)時(shí),下列兩個(gè)結(jié)論:

①|(zhì)PM|+|PN|的值不變;②|PN|﹣|PM|的值不變,其中只有一個(gè)結(jié)論正確,請(qǐng)判斷出正確結(jié)論,并求其值.

【答案】(1)5;(2);(3) ; .

【解析】

試題(1)應(yīng)用非負(fù)數(shù)的性質(zhì)得,a+4=0,b-1=0,解得ab的值,進(jìn)而求得|AB|的值;

2)應(yīng)考慮到A、B、P三點(diǎn)之間的位置關(guān)系的多種可能解題;

3)當(dāng)PA的左側(cè)移動(dòng)時(shí),設(shè)點(diǎn)P對(duì)應(yīng)的數(shù)為x,列式求出|PN|-|PM|的值即可.

試題解析:解:(1)由題意得a+4=0b-1=0,解得a=-4,b=1,所以|AB|=1--4=5;

2)當(dāng)P在點(diǎn)A左側(cè)時(shí),|PA|-|PB|=-|PB|-|PA|=-|AB|=-5≠2

當(dāng)P在點(diǎn)B右側(cè)時(shí),|PA|-|PB|=|AB|=5≠2,

上述兩種情況的點(diǎn)P不存在,

當(dāng)PA、B之間時(shí),|PA|=|x--4|=x+4,|PB|=|x-1|=1-x,

∵|PA|-|PB|=2,x4)-(1x)=2∴x=;

,

3)第個(gè)結(jié)論正確,|PN||PM|=

∵|PN|-|PM|=|PB|-|PA|=|AB|=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用四個(gè)長為m,寬為n的相同長方形按如圖方式拼成一個(gè)正方形.

(1).請(qǐng)用兩種不同的方法表示圖中陰影部分的面積.

方法①: ;

方法②:

(2). (1)可得出2, ,4mn這三個(gè)代數(shù)式之間的一個(gè)等量關(guān)系為:

(3)利用(2)中得到的公式解決問題:已知2a+b=6,ab=4,試求的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC的角平分線AD交BC于E,交△ABC的外接圓⊙O于D.
(1)求證:△ABE∽△ADC;
(2)請(qǐng)連接BD,OB,OC,OD,且OD交BC于點(diǎn)F,若點(diǎn)F恰好是OD的中點(diǎn).求證:四邊形OBDC是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=mx+n與,其中m≠0,n≠0,那么它們?cè)谕蛔鴺?biāo)系中的圖象可能是( )

A B C D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)y=的圖象如圖所示,A,P為該圖象上的點(diǎn),且關(guān)于原點(diǎn)成中心對(duì)稱.在△PAB中,PB∥y軸,AB∥x軸,PB與AB相交于點(diǎn)B.若△PAB的面積大于12,則關(guān)于x的方程(a-1)x2-x+=0的根的情況是________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠倉庫儲(chǔ)存了部分原料,按原計(jì)劃每時(shí)消耗2 t,可用60 h.由于技術(shù)革新,實(shí)際生產(chǎn)能力有所提高,即每時(shí)消耗的原料量大于計(jì)劃消耗的原料量.設(shè)現(xiàn)在每時(shí)消耗原料x(單位:t),庫存的原料可使用的時(shí)間為y(單位:h).

(1)寫出y關(guān)于x的函數(shù)解析式,并求出自變量的取值范圍;

(2)若恰好經(jīng)過24 h才有新的原料進(jìn)廠,為了使機(jī)器不停止運(yùn)轉(zhuǎn),則x應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊△ABC中,D是邊AC上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4.則下列四個(gè)結(jié)論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△AED的周長是9.其中正確的結(jié)論是(把你認(rèn)為正確結(jié)論的序號(hào)都填上.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某運(yùn)輸隊(duì)要運(yùn)300 t物資到江邊防洪.

(1)運(yùn)輸時(shí)間t(單位:h)與運(yùn)輸速度v(單位:t/h)之間有怎樣的函數(shù)關(guān)系式?

(2)運(yùn)了一半時(shí),接到防洪指揮部命令,剩下的物資要在2 h之內(nèi)運(yùn)到江邊,則運(yùn)輸速度至少為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系內(nèi),一次函數(shù)y=ax+b與二次函數(shù)y=ax2+2x+b的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案