已知一元二次方程x2+px+q+1=0的一根為2.
(1)求q關于p的關系式;
(2)求證:拋物線y=x2+px+q與x軸有兩個交點;
(3)設拋物線y=x2+px+q的頂點為M,且與x軸相交于A(x1,0)、B(x2,0)兩點,求使△AMB面積最小時的拋物線的解析式.
【答案】分析:(1)把x=2代入可求得q與p的關系式;
(2)由△=b2-4ac可判斷拋物線與x軸的交點情況;
(3)先寫出該拋物線的頂點坐標,方程根與系數(shù)關系可求線段AB的長,進而求得△AMB的面積表達,從而求得最小值.
解答:(1)解:把x=2代入得22+2p+q+1=0,即q=-(2p+5);

(2)證明:∵一元二次方程x2+px+q=0的判別式△=p2-4q>0,
由(1)得△=p2+4(2p+5)=p2+8p+20=(p+4)2+4>0,(3分)
∴一元二次方程x2+px+q=0有兩個不相等的實根.(4分)
∴拋物線y=x2+px+q與x軸有兩個交點;(5分)

(3)解:拋物線頂點的坐標為,(6分)
∵x1,x2是方程x2+px+q=0的兩個根,
,
.(7分)
,(8分)
要使S△AMB最小,只須使p2-4q最。
由(2)得△=p2-4q=(p+4)2+4,
所以當p=-4時,有最小值4,此時S△AMB=1,q=3.(9分)
故拋物線的解析式為y=x2-4x+3.(10分)
點評:考查了代入法、判別式△的使用,以及一元二次方程中根與系數(shù)的關系、三角形面積的求法、最大最小值的求解等內(nèi)容.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、已知一元二次方程x2+px+3=0的一個根為-3,則p=
4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

19、已知一元二次方程x2+mx+3=0的一根是1,求該方程的另一根與m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

12、已知一元二次方程x2-mx-6=0的一個根是x=-3,則實數(shù)m的值為
-1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、已知一元二次方程x2-5x-3k=0有一根為-3,求k及方程的另一根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知一元二次方程x2-6x-5=0的兩根為a、b,則
1
a
+
1
b
的值是
 

查看答案和解析>>

同步練習冊答案