【題目】如圖,已知:AD為△ABC的中線,過B、C兩點(diǎn)分別作AD所在直線的垂線段BECFE、F為垂足,過點(diǎn)EEGABBC于點(diǎn)H,連結(jié)HF并延長交AB于點(diǎn)P。

1)求證:DE=DF

2)若;①求:的值;②求證:四邊形HGAP為平行四邊形。

【答案】1)見解析;(2)①,②見解析.

【解析】

1)根據(jù)AD是△ABC的中線得到BDCD,根據(jù)對(duì)頂角相等得到∠FDC=∠EDB,又因?yàn)椤?/span>DFC=∠DEB90°,即可證得BDE≌△CDF,繼而證出DE=DF;(2)設(shè)BH11x,HC5x,則BDCDBC8x,DH3xHC5x,根據(jù)EHAB可得△EDH∽△ADB,再根據(jù)相似三角形對(duì)應(yīng)邊成比例以及DEDF得到的值;②進(jìn)一步求出的值,得到,再根據(jù)平行線分線段成比例定理證得FHAC ,即PHAC,再根據(jù)兩組對(duì)邊分別平行的四邊形是平行四邊形這一定理即可證得四邊形HGAP為平行四邊形。

解:(1)∵AD是△ABC的中線,∴BDCD,

∵∠FDC和∠EDB是對(duì)頂角,∴∠FDC=∠EDB ,

又∵BEAE,CFAE,∴∠DFC=∠DEB90°,

BDE≌△CDFAAS),∴DE=DF.

2)設(shè)

EHAB

∴△EDH∽△ADB

②∵ FHAC PHAC

EGAB∴四邊形HGAP為平行四邊形

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC沿直線AB向右平移后到達(dá)△BDE的位置.

1)若AC6cm,則BE   cm;

2)若∠CAB50°,∠BDE100°,求∠CBE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)yx1的圖象與坐標(biāo)軸分別交于A、B兩點(diǎn),與反比例函數(shù)y的圖象在第二象限的交點(diǎn)為點(diǎn)C,CDx軸,垂足為點(diǎn)D,若C點(diǎn)橫坐標(biāo)為-4,

(1)反比例函數(shù)的關(guān)系式及E點(diǎn)坐標(biāo);

(2)利用圖像,當(dāng)x<0時(shí),寫出 的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的袋中裝有5個(gè)只有顏色不同的球,其中3個(gè)黃球,2個(gè)黑球.

(1)求從袋中同時(shí)摸出的兩個(gè)球都是黃球的概率;

(2)現(xiàn)將黑球和白球若干個(gè)(黑球個(gè)數(shù)是白球個(gè)數(shù)的2倍)放入袋中,攪勻后,若從袋中摸出一個(gè)球是黑球的概率是,求放入袋中的黑球的個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某書店積極響應(yīng)政府改革創(chuàng)新,奮發(fā)有為的號(hào)召,舉辦讀書節(jié)系列活動(dòng).活動(dòng)中故事類圖書的標(biāo)價(jià)是典籍類圖書標(biāo)價(jià)的1.5倍,若顧客用540元購買圖書,能單獨(dú)購買故事類圖書的數(shù)量恰好比單獨(dú)購買典籍類圖書的數(shù)量少10本.

1)求活動(dòng)中典籍類圖書的標(biāo)價(jià);

2)該店經(jīng)理為鼓勵(lì)廣大讀者購書,免費(fèi)為購買故事類的讀者贈(zèng)送圖1所示的精致矩形包書紙.在圖1的包書紙示意圖中,虛線是折痕,陰影是裁剪掉的部分,四角均為大小相同的正方形,正方形的邊長為折疊進(jìn)去的寬度.已知該包書紙的面積為875cm2(含陰影部分),且正好可以包好圖2中的《中國故事》這本書,該書的長為21cm,寬為15cm,厚為1cm,請(qǐng)直接寫出該包書紙包這本書時(shí)折疊進(jìn)去的寬度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+2與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且點(diǎn)A的坐標(biāo)為(1,0).

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

(2)判斷ABC的形狀,并證明你的結(jié)論;

(3)點(diǎn)M是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),當(dāng)ACM的周長最小時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,AC=,tanB=.半徑為2的⊙C, 分別交AC、BC于點(diǎn)D、E,得到 .

(1)求證:AB為⊙C的切線;

(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】的最小值是______,則x=_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABO的直徑,C是圓上一點(diǎn),BAC的平分線交O于點(diǎn)D,過DDEACAC的延長線于點(diǎn)E,如圖①.

(1)求證:DEO的切線;

(2)若AB=10,AC=6,求BD的長;

(3)如圖,若FOA中點(diǎn),FGOA交直線DE于點(diǎn)G,若FG=,tan∠BAD=,求O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案