【題目】如圖,拋物線y=﹣x2+bx+2與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且點(diǎn)A的坐標(biāo)為(1,0).

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

(2)判斷ABC的形狀,并證明你的結(jié)論;

(3)點(diǎn)M是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),當(dāng)ACM的周長(zhǎng)最小時(shí),求點(diǎn)M的坐標(biāo).

【答案】(1)頂點(diǎn)D的坐標(biāo)為(﹣,);(2)△ABC是直角三角形(3)當(dāng)M的坐標(biāo)為(﹣,

【解析】分析:(1)、將點(diǎn)A的坐標(biāo)代入函數(shù)解析式求出b的值,然后將二次函數(shù)進(jìn)行配方從而得出頂點(diǎn)坐標(biāo);(2)、根據(jù)二次函數(shù)的解析式分別得出點(diǎn)A、B、C的坐標(biāo),然后分別求出AC、BCAB的長(zhǎng)度,然后根據(jù)勾股定理的逆定理得出答案;(3)、由拋物線的性質(zhì)可知,點(diǎn)A與點(diǎn)B關(guān)于對(duì)稱軸對(duì)稱,則BC與對(duì)稱軸的交點(diǎn)就是點(diǎn)M,根據(jù)一次函數(shù)的交點(diǎn)求法得出點(diǎn)M的坐標(biāo).

詳解:(1)、∵點(diǎn)A(1,0)在拋物線y=﹣x2+bx+2上,∴﹣+b+2=0,解得,b=﹣,

拋物線的解析式為y=﹣x2x+2,y=﹣x2x+2=﹣(x+2+,

則頂點(diǎn)D的坐標(biāo)為(﹣,);

(2)、△ABC是直角三角形,

證明:點(diǎn)C的坐標(biāo)為(0,2),即OC=2, x2x+2=0, 解得,x1=﹣4,x2=1,

則點(diǎn)B的坐標(biāo)為(﹣4,0),即OB=4,OA=1,OB=4, ∴AB=5,

由勾股定理得,AC=,BC=2, AC2+BC2=25=AB2, ∴△ABC是直角三角形;

(3)、由拋物線的性質(zhì)可知,點(diǎn)A與點(diǎn)B關(guān)于對(duì)稱軸對(duì)稱,

連接BC交對(duì)稱軸于M,此時(shí)ACM的周長(zhǎng)最小, 設(shè)直線BC的解析式為:y=kx+b,

由題意得,, 解得,, 則直線BC的解析式為:y=x+2,

當(dāng)x=﹣時(shí),y=, ∴當(dāng)M的坐標(biāo)為(﹣).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1,2,3,...30,這30個(gè)整數(shù),任意分為15組,每組2個(gè)數(shù).現(xiàn)將每組數(shù)中的一個(gè)數(shù)記為,另一個(gè)數(shù)記為,計(jì)算代數(shù)式的值,15組數(shù)代入后可得到15個(gè)值,則這15個(gè)值之和的最小值為(

A.B.120C.225D.240

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)用14500元購(gòu)進(jìn)甲、乙兩種礦泉水共500箱,礦泉水的成本價(jià)與銷售價(jià)如表()所示:

求:(1)購(gòu)進(jìn)甲、乙兩種礦泉水各多少箱?

2)該商場(chǎng)售完這500箱礦泉水,可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:已知實(shí)數(shù)mn滿足(2m2+n2+1)(2m2+n21)=80,試求2m2+n2的值

解:設(shè)2m2+n2t,則原方程變?yōu)椋?/span>t+1)(t1)=80,整理得t2180t281,∴t±9因?yàn)?/span>2m2+n2≥0,所以2m2+n29

上面這種方法稱為換元法,把其中某些部分看成一個(gè)整體,并用新字母代替(即換元),則能使復(fù)雜的問(wèn)題簡(jiǎn)單化.

根據(jù)以上閱讀材料內(nèi)容,解決下列問(wèn)題,并寫出解答過(guò)程.

已知實(shí)數(shù)x,y滿足(4x2+4y2+3)(4x2+4y23)=27,求x2+y2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:AD為△ABC的中線,過(guò)B、C兩點(diǎn)分別作AD所在直線的垂線段BECFE、F為垂足,過(guò)點(diǎn)EEGABBC于點(diǎn)H,連結(jié)HF并延長(zhǎng)交AB于點(diǎn)P

1)求證:DE=DF

2)若;①求:的值;②求證:四邊形HGAP為平行四邊形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,DBC的中點(diǎn),DEBCAC于點(diǎn)E,已知AD=AB,連接BEAD于點(diǎn)F,下列結(jié)論:①BE=CE;②∠CAD=ABESABF=3SDEF;④△DEF∽△DAE,其中正確的有(   )

A. 1個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為推動(dòng)陽(yáng)光體育活動(dòng)的廣泛開展,引導(dǎo)學(xué)生積極參加體育鍛煉,學(xué)校準(zhǔn)備購(gòu)買一批運(yùn)動(dòng)鞋供學(xué)生借用.現(xiàn)從各年級(jí)隨機(jī)抽取了部分學(xué)生的鞋號(hào),繪制了如下的統(tǒng)計(jì)圖和圖,請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:

1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為 人,圖中的m的值為 ,圖“38號(hào)所在的扇形的圓心角度數(shù)為 ;

2)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)是 ,中位數(shù)是

3)根據(jù)樣本數(shù)據(jù),若學(xué)校計(jì)劃購(gòu)買200雙運(yùn)動(dòng)鞋,建議購(gòu)買36號(hào)運(yùn)動(dòng)鞋多少雙?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一天,明明和強(qiáng)強(qiáng)相約到距他們村莊560米的博物館游玩,他們同時(shí)從村莊出發(fā)去博物館,明明到博物館后因家中有事立即返回.如圖是他們離村莊的距離y(米)與步行時(shí)間x(分鐘)之間的函數(shù)圖象,若他們出發(fā)后6分鐘相遇,則相遇時(shí)強(qiáng)強(qiáng)的速度是_____/分鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠AOC=∠BOD120°,∠BOCAOD

1)求∠AOD的度數(shù);

2)若射線OB繞點(diǎn)O以每秒旋轉(zhuǎn)20°的速度順時(shí)針旋轉(zhuǎn),同時(shí)射線OC以每秒旋轉(zhuǎn)15°的速度逆時(shí)針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)的時(shí)間為t秒(0t6),試求當(dāng)∠BOC20°時(shí)t的值;

3)若∠AOB繞點(diǎn)O以每秒旋轉(zhuǎn)5°的速度逆時(shí)針旋轉(zhuǎn),同時(shí)∠COD繞點(diǎn)O以每秒旋轉(zhuǎn)10°的速度逆時(shí)針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)的時(shí)間為t秒(0t18),OM平分∠AOCON平分∠BOD,在旋轉(zhuǎn)的過(guò)程中,∠MON的度數(shù)是否發(fā)生改變?若不變,求出其值:若改變,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案