【題目】1)如圖(1),已知:在ABC中,∠BAC90°,ABAC,直線m經過點A,BD⊥直線mCE⊥直線m,垂足分別為點D、E.證明:DEBD+CE

2)如圖(2),將(1)中的條件改為:在ABC中,ABAC,D、AE三點都在直線m上,并且有∠BDA=∠AEC=∠BACα,其中α為任意銳角或鈍角.請問結論DEBD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

3)拓展與應用:如圖(3),D、ED、A、E三點所在直線m上的兩動點(DA、E三點互不重合),點F為∠BAC平分線上的一點,且ABFACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷DEF的形狀并說明理由.

【答案】1)見解析. 2)見解析. 3DEF為等邊三角形.見解析.

【解析】

1)根據BD⊥直線m,CE⊥直線m得∠BDA=∠CEA90°,而∠BAC90°,根據等角的余角相等得∠CAE=∠ABD,然后根據“AAS”可判斷ADB≌△CEA,則AEBDADCE,于是DEAE+ADBD+CE

2)由∠BDA=∠AEC=∠BAC120°,就可以求出∠BAD=∠ACE,進而由AAS就可以得出BAD≌△ACE,就可以得出BDAEDACE,即可得出結論;

3)由等邊三角形的性質,可以求出∠BAC120°,就可以得出BAD≌△ACE,就有BDAE,進而得出BDF≌△AEF,得出DFEF,∠BFD=∠AFE,而得出∠DFE60°,就有DEF為等邊三角形.

1)如圖1,

BD⊥直線m,CE⊥直線m

∴∠BDA=∠CEA90°,

∵∠BAC90°,

∴∠BAD+CAE=90°

∵∠BAD+ABD90°,

∴∠CAE=∠ABD,

ADBCEA中,

,

∴△ADB≌△CEAAAS),

AEBD,ADCE,

DEAE+ADBD+CE

2)如圖2,

∵∠BDA=∠BACα,

∴∠DBA+BAD=∠BAD+CAE180°α,

∴∠DBA=∠CAE,

ADBCEA中,

∴△ADB≌△CEAAAS),

AEBDADCE,

DEAE+ADBD+CE

3)如圖3,

由(2)可知,ADB≌△CEA,

BDAE,∠DBA=∠CAE,

∵△ABFACF均為等邊三角形,

∴∠ABF=∠CAF60°,BFAF

∴∠DBA+ABF=∠CAE+CAF,

∴∠DBF=∠FAE,

∵在DBFEAF中,

,

∴△DBF≌△EAFSAS),

DFEF,∠BFD=∠AFE,

∴∠DFE=∠DFA+AFE=∠DFA+BFD60°

∴△DEF為等邊三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某電信公司有A、B兩種計費方案:月通話費用y(元)與通話時間x(分鐘)的關系,如圖所示,下列說法中正確的是(  )

A.月通話時間低于200分鐘選B方案劃算

B.月通話時間超過300分鐘且少于400分鐘選A方案劃算

C.月通話費用為70元時,A方案比B方案的通話時間長

D.月通話時間在400分鐘內,B方案通話費用始終是50

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)在數(shù)軸上表示下列各數(shù),并用“<”號把它們連接.

3, -1, 0, -2.5, 1.5 2

(2)快遞員要從物流中心出發(fā)送貨,已知甲住戶在物流中心的東邊 2km 處,乙住戶在甲住戶的西邊 3km 處,丙住戶在物流中心的西邊 1.5km 處,請建立數(shù)軸表示物流中心、甲住戶、乙住戶、丙住戶的位置關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.

(1)求每臺A型電腦和B型電腦的銷售利潤;

(2)該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.

①求y關于x的函數(shù)關系式;

②該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?

(3)實際進貨時,廠家對A型電腦出廠價下調m(0<m<100)元,且限定商店最多購進A型電腦70臺.若商店保持兩種電腦的售價不變,請你根據以上信息及(2)中條件,設計出使這100臺電腦銷售總利潤最大的進貨方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線與反比例函數(shù))圖像交于點A,將直線向右平移4個單位,交反比例函數(shù))圖像于點B,交y軸于點C,連結AB、AC,則△ABC的面積為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線與直線垂直相交于點,點在射線上運動(點不與點重合),點在射線上運動(點不與點重合).

(1)如圖1,已知、分別是的角平分線,

①當時,求的度數(shù);

②點在運動的過程中,的大小是否會發(fā)生變化?若發(fā)生變化,請說明變化的情況;若不發(fā)生變化,試求出的大小;

(2)如圖2,延長,已知、的角平分線與的角平分線所在的直線分別相交于、,在中,如果有一個角是另一個角的3倍,請直接寫出的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠A=45°,AB=,AC=6,點D,E為邊AC上的點,AD=1,CE=2,點F為線段DE上一點(不與D,E重合),分別以點D、E為圓心,DF、EF為半徑作圓.若兩圓與邊AB,BC共有三個交點時,線段DF長度的取值范圍是_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形ABCD中,EBC上一點,FCD延長線上一點,,連接AE,AF,EF,GEF中點,連接AG,DG

1)如圖1:若,求DG

2)如圖2:延長GDM,使,過MMNFDAF的延長線于N,連接NG,若.求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把下列各數(shù)填入相應的括號里-2,100π,-5,0.8,-|+5.2|,0,0.1010010001…,-(-4

正有理數(shù)集合:{ }

整數(shù)集合:{ }

負分數(shù)集合:{ }

無理數(shù)集合:{ }

查看答案和解析>>

同步練習冊答案