某商店以16元/支的價(jià)格進(jìn)了一批鋼筆,如果以20元/支的價(jià)格售出,每月可以賣出200支,而每上漲1元就少賣10支,現(xiàn)在商店店主希望該筆月銷售利潤(rùn)達(dá)1350元,則每支鋼筆應(yīng)該上漲多少元錢?請(qǐng)你就該種鋼筆的漲價(jià)幅度和進(jìn)貨量,通過計(jì)算給店主提出一些合理建議.
每支鋼筆應(yīng)該上漲5元或11元錢,月銷售利潤(rùn)達(dá)1350元;給店主提的建議為:店主對(duì)該種鋼筆上漲8元,每月進(jìn)120支鋼筆.
解析試題分析:設(shè)上漲元,根據(jù)利潤(rùn)=銷售量×(定價(jià)﹣進(jìn)價(jià)),列出表達(dá)式,令=1350,解得每支鋼筆應(yīng)該上漲多少元錢,最后將實(shí)際問題轉(zhuǎn)化為求函數(shù)最值問題,從而求得最大利潤(rùn).
試題解析:設(shè)每支鋼筆應(yīng)該上漲元錢,則,解得:,,∴每支鋼筆應(yīng)該上漲5元或11元錢,月銷售利潤(rùn)達(dá)1350元;∵設(shè)利潤(rùn)是元?jiǎng)t,∴當(dāng)時(shí),有最大值為1440;∴給店主提的建議為:店主對(duì)該種鋼筆上漲8元,每月進(jìn)120支鋼筆.
考點(diǎn):1.二次函數(shù)的應(yīng)用;2.應(yīng)用題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
二次函數(shù)y=x2+bx+c的圖象經(jīng)過點(diǎn)(4,3),(3,0).
(1)b= ,c= ;
(2)選取適當(dāng)?shù)臄?shù)據(jù)填寫下表,并在右圖的直角坐標(biāo)系中畫出該函數(shù)的圖像;
x | … | | | | | | … |
y | … | | | | | | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
有兩個(gè)直角三角形,在△ABC中,∠ACB=90°,AC=3,BC=6,在△DEF中,∠FDE=90°,DE=DF=4。將這兩個(gè)直角三角形按圖1所示位置擺放,其中直角邊在同一直線上,且點(diǎn)與點(diǎn)重合,F(xiàn)固定,將以每秒1個(gè)單位長(zhǎng)度的速度在上向右平移,當(dāng)點(diǎn)與點(diǎn)重合時(shí)運(yùn)動(dòng)停止。設(shè)平移時(shí)間為秒。
(1)當(dāng)為 秒時(shí),邊恰好經(jīng)過點(diǎn);當(dāng)為 秒時(shí),運(yùn)動(dòng)停止;
(2)在平移過程中,設(shè)與重疊部分的面積為,請(qǐng)直接寫出與的函數(shù)關(guān)系式,并寫出的取值范圍;
(3)當(dāng)停止運(yùn)動(dòng)后,如圖2,為線段上一點(diǎn),若一動(dòng)點(diǎn)從點(diǎn)出發(fā),先沿方向運(yùn)動(dòng),到達(dá)點(diǎn)后再沿斜坡方向運(yùn)動(dòng)到達(dá)點(diǎn),若該動(dòng)點(diǎn)在線段上運(yùn)動(dòng)的速度是它在斜坡上運(yùn)動(dòng)速度的2倍,試確定斜坡的坡度,使得該動(dòng)點(diǎn)從點(diǎn)運(yùn)動(dòng)到點(diǎn)所用的時(shí)間最短。(要求,簡(jiǎn)述確定點(diǎn)位置的方法,但不要求證明。)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖1,已知拋物線y=ax2+bx(a≠0)經(jīng)過A(3,0)、B(4,4)、D(2, n)三點(diǎn).
(1)求拋物線的解析式及點(diǎn)D坐標(biāo);
(2)點(diǎn)M是拋物線對(duì)稱軸上一動(dòng)點(diǎn),求使BM-AM的值最大時(shí)的點(diǎn)M的坐標(biāo);
(3)如圖2,將射線BA沿BO翻折,交y軸于點(diǎn)C,交拋物線于點(diǎn)N,求點(diǎn)N的坐標(biāo);
(4)在(3)的條件下,連結(jié)ON,OD,如圖2,請(qǐng)求出所有滿足△POD∽△NOB的點(diǎn)P坐標(biāo)(點(diǎn)P、O、D分別與點(diǎn)N、O、B對(duì)應(yīng)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線與軸交于點(diǎn)A(-1,0)、B(3,0),與軸交于點(diǎn)C(0,3).
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)若P為線段BD上的一個(gè)動(dòng)點(diǎn),點(diǎn)P的橫坐標(biāo)為m,試用含m的代數(shù)式表示點(diǎn)P的縱坐標(biāo);
(3)過點(diǎn)P作PM⊥x軸于點(diǎn)M,求四邊形PMAC的面積的最大值和此時(shí)點(diǎn)P的坐標(biāo);
(4)若點(diǎn)F是第一象限拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)F作FQ∥AC交x軸于點(diǎn)Q.當(dāng)點(diǎn)F的坐標(biāo)為 時(shí),四邊形FQAC是平行四邊形;當(dāng)點(diǎn)F的坐標(biāo)為 時(shí),四邊形FQAC是等腰梯形(直接寫出結(jié)果,不寫求解過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,直線y=x+3與坐標(biāo)軸分別交于A,B兩點(diǎn),拋物線y=ax2+bx﹣3a經(jīng)過點(diǎn)A,B,頂點(diǎn)為C,連接CB并延長(zhǎng)交x軸于點(diǎn)E,點(diǎn)D與點(diǎn)B關(guān)于拋物線的對(duì)稱軸MN對(duì)稱.
(1)求拋物線的解析式及頂點(diǎn)C的坐標(biāo);
(2)求證:四邊形ABCD是直角梯形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,一塊含60°角的三角板作如圖擺放,斜邊AB在x軸上,直角頂點(diǎn)C在y軸正半軸上,已知點(diǎn)A(-1,0).
(1)請(qǐng)直接寫出點(diǎn)B,C的坐標(biāo):B( , ),C( , );
(2)求經(jīng)過A,B,C三點(diǎn)的拋物線解析式;
(3)現(xiàn)有與上述三角板完全一樣的三角板DEF(其中∠EDF=90°,∠DEF=60°),把頂點(diǎn)E放在線段AB上(點(diǎn)E是不與A,B兩點(diǎn)重合的動(dòng)點(diǎn)),并使ED所在直線經(jīng)過點(diǎn)C.此時(shí),EF所在直線與(2)中的拋物線交于第一象限的點(diǎn)M.當(dāng)AE=2時(shí),拋物線的對(duì)稱軸上是否存在點(diǎn)P使△PEM是等腰三角形,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線y=ax2+bx(a>0)經(jīng)過原點(diǎn)O和點(diǎn)A(2,0).
(1)寫出拋物線的對(duì)稱軸與x軸的交點(diǎn)坐標(biāo);
(2)點(diǎn)(x1,y1),(x2,y2)在拋物線上,若x1<x2<1,比較y1,y2的大。
(3)點(diǎn)B(﹣1,2)在該拋物線上,點(diǎn)C與點(diǎn)B關(guān)于拋物線的對(duì)稱軸對(duì)稱,求直線AC的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
矩形紙片ABCD中,AB=5,AD=4.
(1)如圖1,四邊形MNEF是在矩形紙片ABCD中裁剪出的一個(gè)正方形.你能否在該矩形中裁剪出一個(gè)面積最大的正方形,最大面積是多少?說明理由;
(2)請(qǐng)用矩形紙片ABCD剪拼成一個(gè)面積最大的正方形.要求:在圖2的矩形ABCD中畫出裁剪線,并在網(wǎng)格中畫出用裁剪出的紙片拼成的正方形示意圖(使正方形的頂點(diǎn)都在網(wǎng)格的格點(diǎn)上).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com