在平面直角坐標系xOy中,一塊含60°角的三角板作如圖擺放,斜邊AB在x軸上,直角頂點C在y軸正半軸上,已知點A(-1,0).
(1)請直接寫出點B,C的坐標:B( , ),C( , );
(2)求經(jīng)過A,B,C三點的拋物線解析式;
(3)現(xiàn)有與上述三角板完全一樣的三角板DEF(其中∠EDF=90°,∠DEF=60°),把頂點E放在線段AB上(點E是不與A,B兩點重合的動點),并使ED所在直線經(jīng)過點C.此時,EF所在直線與(2)中的拋物線交于第一象限的點M.當AE=2時,拋物線的對稱軸上是否存在點P使△PEM是等腰三角形,若存在,請求出點P的坐標;若不存在,請說明理由.
(1)、;(2);(3)存在,P點坐標為(1,2)或(1,-2)或(1,)或(1,).
解析試題分析:(1)如圖,已知∠CAB=600,所以∠ACO=300,所以AC=2AO,又由A(-1,0).可知AO=1,所以AC=2,
在Rt△ACB中,∠ABC=300,所以AB=2AC,即AB=4,所以點B的坐標是(3,0)由勾股定理可得CO=.所以
點B、C的坐標分別為:、.
如圖,已知拋物線與x軸兩交點A、B的坐標,可設(shè)拋物線的解析式為:,再由點C
的坐標求出a的值即可求解.
(3)求滿足使△PEM為等腰三角形的動點P的坐標,一般地,當一等腰三角形的兩腰不明確時,應(yīng)分類討論如下:①當EP=EM時,即以點E為圓心,以EM為半徑作圓與對稱軸的交點即為所求點P;②當EM=PM時,即以點M為圓心,以EM為半徑作圓與對稱軸的交點即為所求點P;③當PE=PM時,線段EM的垂直平分線與對稱軸的交點即為所求點P.先由已知求證△CAE為等邊三角形,過點M作MN⊥x軸,求出點M的坐標,再依次求出上述各種情況下滿足條件的點P的坐標.
試題解析:
解:(1)、.
(2)∵點A(-1,0),B(3,0),
∴可設(shè)經(jīng)過A,B,C三點的拋物線的解析式為,
∵點C(0,)也在此拋物線上,
∴, 解得:,
∴此拋物線的解析式為即.
存在.如圖所示:
∵AE=2,
∴OE=1,
∴E(1,0),此時,△CAE為等邊三角形.
∴∠AEC=∠A=60°.
又∵∠CEM=60°,
∴∠MEB=60°.
∴點C與點M關(guān)于拋物線的對稱軸對稱.
∵C(0,),
∴M(2,).
過M作MN⊥x軸于點N(2,0),
∴MN=.
∴ EN=1.
∴.
若△PEM為等腰三角形,則:
①如圖1,當EP=EM時,∵EM=2,且點P在直線x=1上,∴P(1,2)或P(1,-2).
②如圖2,當EM=PM時,點M在EP的垂直平分線上,∴P(1,).
③如圖3,當PE=PM時,點P是線段EM的垂直平分線與直線x=1的交點,∴P(1,).
∴綜上所述,存在P點坐標為(1,2)或(1,-2)或(1,)或(1,)時,△EPM為等腰三角形.
考點,1、求二次函數(shù)解析式;2、動點問題-滿足等腰三角形的點的坐標.
科目:初中數(shù)學 來源: 題型:解答題
已知拋物線與x軸相交于兩點A(1,0),B(-3,0),與y軸相交于點C(0,3).
(1)求此拋物線的函數(shù)表達式;
(2)如果點是拋物線上的一點,求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
在平面直角坐標系xOy中,已知二次函數(shù)的圖像經(jīng)過原點及點A(1,2),與x軸相交于另一點B.
(1)求:二次函數(shù)的解析式及B點坐標;
(2)若將拋物線以為對稱軸向右翻折后,得到一個新的二次函數(shù),已知二次函數(shù)與x軸交于兩點,其中右邊的交點為C點.點P在線段OC上,從O點出發(fā)向C點運動,過P點作x軸的垂線,交直線AO于D點,以PD為邊在PD的右側(cè)作正方形PDEF(當P點運動時,點D.點E、點F也隨之運動);
①當點E在二次函數(shù)y1的圖像上時,求OP的長.
②若點P從O點出發(fā)向C點做勻速運動,速度為每秒1個單位長度,同時線段OC上另一個點Q從C點出發(fā)向O點做勻速運動,速度為每秒2個單位長度(當Q點到達O點時停止運動,P點也同時停止運動).過Q點作x軸的垂線,與直線AC交于G點,以QG為邊在QG的左側(cè)作正方形QGMN(當Q點運動時,點G、點M、點N也隨之運動),若P點運動t秒時,兩個正方形分別有一條邊恰好落在同一條直線上(正方形在x軸上的邊除外),求此刻t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
某商店以16元/支的價格進了一批鋼筆,如果以20元/支的價格售出,每月可以賣出200支,而每上漲1元就少賣10支,現(xiàn)在商店店主希望該筆月銷售利潤達1350元,則每支鋼筆應(yīng)該上漲多少元錢?請你就該種鋼筆的漲價幅度和進貨量,通過計算給店主提出一些合理建議.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在矩形OABC中,點A(0,10),C(8,0).沿直線CD折疊矩形OABC的一邊BC,使點B落在OA邊上的點E處.分別以O(shè)C, OA所在的直線為x軸,y軸建立平面直角坐標系,拋物線經(jīng)過O,D,C三點.
(1)求D的的坐標及拋物線的解析式;
(2)一動點P從點E出發(fā),沿EC以每秒2個單位長的速度向點C運動,同時動點Q從點C出發(fā),沿CO以每秒1個單位長的速度向點O運動,當點P運動到點C時,兩點同時停止運動.設(shè)運動時間為t秒,當t為何值時,以P、Q、C為頂點的三角形與△ADE相似?
(3)點N在拋物線對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使以M,N,C,E為頂點的四邊形是平行四邊形?若存在,請直接寫出點M與點N的坐標(不寫求解過程);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
某市政府大力扶持大學生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似的看做一次函數(shù):y=-10x+500.
(1)設(shè)李明每月獲得利潤為w(元),當銷售單價定為多少元時,每月可獲得最大利潤?(6分)
(2)如果李明想要每月獲得2 000元的利潤,那么銷售單價應(yīng)定為多少元?(3分)
(3)物價部門規(guī)定,這種護眼臺燈的銷售單價不得高于32元,如果李明想要每月獲得的利潤不低于2 000元,那么他每月的成本最少需要多少元?(成本=進價×銷售量) (3分)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知關(guān)于的一元二次方程有實數(shù)根,為正整數(shù).
(1)求的值;
(2)當此方程有兩個非零的整數(shù)根時,將關(guān)于的二次函數(shù)的圖象向下平移8個單位,求平移后的圖象的解析式;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
甲車在彎路做剎車試驗,收集到的數(shù)據(jù)如下表所示:
速度(千米/時) | 0 | 5 | 10 | 15 | 20 | 25 | … |
剎車距離(米) | 0 | 2 | 6 | … |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知拋物線與直線交于點O(0,0),。點B是拋物線上O,A之間的一個動點,過點B分別作x軸、y軸的平行線與直線OA交于點C,E。
(1)求拋物線的函數(shù)解析式;
(2)若點C為OA的中點,求BC的長;
(3)以BC,BE為邊構(gòu)造條形BCDE,設(shè)點D的坐標為(m,n),求m,n之間的關(guān)系式。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com