【題目】在咸寧創(chuàng)建“國家衛(wèi)生城市”的活動中,市園林公司加大了對市區(qū)主干道兩旁植“景觀樹”的力度,平均每天比原計劃多植5棵,現(xiàn)在植60棵所需的時間與原計劃植45棵所需的時間相同,問現(xiàn)在平均每天植多少棵樹?
【答案】解:設(shè)現(xiàn)在平均每天植樹x棵,則原計劃平均每天植樹(x﹣5)棵.依題意得:
,
解得:x=20,
經(jīng)檢驗,x=20是方程的解,且符合題意。
答:現(xiàn)在平均每天植樹20棵。
【解析】試題分析:設(shè)現(xiàn)在平均每天植樹x棵,則原計劃平均每天植樹(x-5)棵.根據(jù)現(xiàn)在植棵所需的時間與原計劃植45棵所需的時間相同建立方程求出其解即可;
試題解析:
設(shè)現(xiàn)在平均每天棵, 則原計劃平均每天植樹(x-5)棵,依題意得:
解得x=20.
經(jīng)檢驗,x=20是原方程的解.且符合題意.
答:現(xiàn)在平均每天20棵
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天,一蔬菜經(jīng)營戶用114元從蔬菜批發(fā)市場購進黃瓜和土豆共40kg到菜市場去賣,黃瓜和土豆這天的批發(fā)價好零售價(單位:元/kg)如下表所示:
品名 | 批發(fā)價 | 零售價 |
黃瓜 | 2.4 | 4 |
土豆 | 3 | 5 |
(1)他當天購進黃瓜和土豆各多少千克?
(2)如果黃瓜和土豆全部賣完,他能賺多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為正方形ABCD的邊BC上一動點(P與B、C不重合),連接AP,過點B作BQ⊥AP交CD于點Q,將△BQC沿BQ所在的直線對折得到△BQC′,延長QC′交BA的延長線于點M.
(1)試探究AP與BQ的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)當AB=3,BP=2PC,求QM的長;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,銳角△ABC內(nèi)接于⊙O,若⊙O的半徑為6,sinA=,求BC的長.
【答案】BC=8.
【解析】試題分析:通過作輔助線構(gòu)成直角三角形,再利用三角函數(shù)知識進行求解.
試題解析:作⊙O的直徑CD,連接BD,則CD=2×6=12.
∵
∴
∴
點睛:直徑所對的圓周角是直角.
【題型】解答題
【結(jié)束】
22
【題目】如圖,一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于A(2,m),B(n,﹣2)兩點.過點B作BC⊥x軸,垂足為C,且S△ABC=5.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請直接寫出不等式k1x+b>的解集;
(3)若P(p,y1),Q(﹣2,y2)是函數(shù)y=圖象上的兩點,且y1≥y2,求實數(shù)p的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形中,點為邊上一點, 和交于點,已知的面積等于6, 的面積等于4,則四邊形的面積等于__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個正方體的表面展開圖,請回答下列問題:
(1)與面B、C相對的面分別是 ;
(2)若A=a3+a2b+3,B=a2b﹣3,C=a3﹣1,D=﹣(a2b﹣6),且相對兩個面所表示的代數(shù)式的和都相等,求E、F分別代表的代數(shù)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小華是同班同學(xué),也是鄰居,某日早晨,小明7:40先出發(fā)去學(xué)校,走了一段后,在途中停下吃了早餐,后來發(fā)現(xiàn)上學(xué)時間快到了,就跑步到學(xué)校;小華離家后直接乘公共汽車到了學(xué)校.如圖是他們從家到學(xué)校已走的路程s(米)和所用時間t(分鐘)的關(guān)系圖.則下列說法中
①小明家與學(xué)校的距離1200米;
②小華乘坐公共汽車的速度是240米/分;
③小華乘坐公共汽車后7:50與小明相遇;
④小華的出發(fā)時間不變,當小華由乘公共汽車變?yōu)榕懿剑遗懿降乃俣仁?/span>100米/分時,他們可以同時到達學(xué)校.其中正確的個數(shù)是( )
A. 1 個B. 2個
C. 3 個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表給出了代數(shù)式﹣x2+bx+c與x的一些對應(yīng)值:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
﹣x2+bx+c | … | 5 | n | c | 2 | ﹣3 | ﹣10 | … |
(1)根據(jù)表格中的數(shù)據(jù),確定b,c,n的值;
(2)設(shè)y=﹣x2+bx+c,直接寫出0≤x≤2時y的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】濟南某中學(xué)在參加“創(chuàng)文明城,點贊泉城”書畫比賽中,楊老師從全校30個班中隨機抽取了4個班(用A,B,C,D表示),對征集到的作鼎的數(shù)量進行了分析統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.
請根據(jù)以上信息,回答下列問題:
(l)楊老師采用的調(diào)查方式是 (填“普查”或“抽樣調(diào)查”);
(2)請補充完整條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中C班作品數(shù)量所對應(yīng)的圓心角度數(shù) .
(3)請估計全校共征集作品的什數(shù).
(4)如果全枝征集的作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一樣等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求恰好選取的兩名學(xué)生性別相同的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com