【題目】如圖所示.在Rt△ABC中,CD是斜邊上的中線,CE是高.已知AB=10cm,DE=2.5cm,則∠BDC=____________度,S△BCD=______cm2.
【答案】120
【解析】
首先根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得CD=5cm,再根據(jù)三角函數(shù)值算出∠ECD的度數(shù),然后根據(jù)三角形外角的性質(zhì)可得∠BDC=∠CED+∠ECD,進(jìn)而得到∠BDC的度數(shù);再根據(jù)勾股定理可計(jì)算出CE的長,然后再利用三角形的面積公式進(jìn)行計(jì)算即可.
∵在Rt△ABC中,CD是斜邊上的中線,
∴CD=AB.
∵AB=10cm,
∴CD=5cm.
∵CE是高,
∴△CED是直角三角形.
∵DE=2.5cm,
∴sin∠ECD==,
∴∠ECD=30°,
∴∠BDC=∠CED+∠ECD=90°+30°=120°;
在Rt△CED中:(cm),
∴S△BCD=DBCE=×5×=(cm2).
故答案為:120;.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一條自南向北的大道上有O、A兩個(gè)景點(diǎn),O、A相距20km,在O處測得另一景點(diǎn)C位于點(diǎn)O的北偏東37°方向,在A處測得景點(diǎn)C位于點(diǎn)A的南偏東76°方向,且A、C相距13km .
(1)求:①A到OC之間的距離;
②O、C兩景點(diǎn)之間的距離;
(2)若在O處測得景點(diǎn)B 位于景點(diǎn)O的正東方向10km,求B、C兩景點(diǎn)之間的距離.(參考數(shù)據(jù):tan37°=0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的圓交AC于點(diǎn)D,交BC于點(diǎn)E,延長AE至點(diǎn)F,使EF=AE,連接FB,FC.
(1)求證:四邊形ABFC是菱形;
(2)若AD=3,BE=,求半圓和菱形ABFC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A(﹣3,1)、B(m,3)兩點(diǎn),
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)寫出使一次函數(shù)的值大于反比例函數(shù)的x的取值范圍;
(3)連接AO、BO,求△ABO的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與拋物線相交于A,B兩點(diǎn),且點(diǎn)A(1,-4)為拋物線的頂點(diǎn),點(diǎn)B在x軸上。
(1)求拋物線的解析式;
(2)在(1)中拋物線的第二象限圖象上是否存在一點(diǎn)P,使△POB與△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)若點(diǎn)Q是y軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(觀察發(fā)現(xiàn)):(1)如圖1,四邊形ABCD和四邊形AEFG都是正方形,且點(diǎn)E在邊AB上,連接DE和BG,猜想線段DE與BG的數(shù)量關(guān)系和位置關(guān)系.(只要求寫出結(jié)論,不必說出理由)
(深入探究):(2)如圖2,將圖1中正方形AEFG繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一定的角度,其他條件與觀察發(fā)現(xiàn)中的條件相同,觀察發(fā)現(xiàn)中的結(jié)論是否還成立?請根據(jù)圖2加以說明.
(拓展應(yīng)用):(3)如圖3,直線l上有兩個(gè)動點(diǎn)A、B,直線l外有一點(diǎn)動點(diǎn)Q,連接QA,QB,以線段AB為邊在l的另一側(cè)作正方形ABCD,連接QD.隨著動點(diǎn)A、B的移動,線段QD的長也會發(fā)生變化,若QA,QB長分別為3,6保持不變,在變化過程中,線段QD的長是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+bx+c經(jīng)過點(diǎn)B(0,3)和點(diǎn)A(3,0).
(1)求拋物線的函數(shù)表達(dá)式和直線的函數(shù)表達(dá)式;
(2)若點(diǎn)P是拋物線落在第一象限,連接PA,PB,求△PAB的面積S的最大值及此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的對稱軸是直線x=1,且經(jīng)過點(diǎn)(﹣1,0),則下列結(jié)論:①abc<0;②2a﹣b=0;③a<﹣ ;④若方程ax2+bx+c﹣2=0的兩個(gè)根為x1和x2,則(x1+1)(x2﹣3)<0,正確的有( 。﹤(gè).
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=ax2-2ax-1(a是常數(shù),a≠0),下列結(jié)論正確的是( )
A. 當(dāng)a=1時(shí),函數(shù)圖象過點(diǎn)(-1,1)
B. 當(dāng)a=-2時(shí),函數(shù)圖象與x軸沒有交點(diǎn)
C. 若a>0,則當(dāng)x≥1時(shí),y隨x的增大而減小
D. 若a<0,則當(dāng)x≤1時(shí),y隨x的增大而增大
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com