【題目】拋物線y=x22x與坐標(biāo)軸的交點個數(shù)為( ).

A.0個 B.1個 C.2個 D.3個

【答案】C.

【解析】

試題分析:根據(jù)拋物線與x軸的交點規(guī)律,如果根的判別式大于0,則拋物線與x軸有兩個交點;如果根的判別式等于0,則拋物線與x軸只有一個交點;如果根的判別式小于0,則拋物線與x軸沒有交點.本題二次函數(shù)y=x22x,∵△=40=4>0,二次函數(shù)與x軸交點個數(shù)為2.故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個零件的形狀如圖所示,按規(guī)定∠A=90,∠C=25,∠B=25,檢驗員已量得∠BDC=150,請問:這個零件合格嗎?說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,定義:在直角三角形ABC中,銳角α的鄰邊與對邊的比叫做角α的余切,記作ctanα,即ctanα==,根據(jù)上述角的余切定義,解下列問題:

(1)如圖1,若BC=3,AB=5,則ctanB= ;

(2)ctan60°= ;

(3)如圖2,已知:ABC中,B是銳角,ctan C=2,AB=10,BC=20,試求B的余弦cosB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀材料,再結(jié)合要求回答問題

【問題情景】

如圖:在四邊形ABCD中,ABADBADC90°E,F分別是BCCD上的點,且線段BE,EF,FD滿足BEFDEF探究圖中EAFBAD之間的數(shù)量關(guān)系.

【初步思考】

小王同學(xué)探究此問題的方法是延長FDG使DGBE,連結(jié)AG

先證明ABE≌△ADG,再證明AEF≌△AGF,

可得出EAFBAD之間的數(shù)量關(guān)系

【探索延伸】

將問題情景中條件BADC90°改為BD180°如圖),其余條件不變,請判斷上述數(shù)量關(guān)系是否仍然成立,若成立,請證明;若不成立,請說明理由

【實際應(yīng)用】

如圖,在某次軍事演習(xí)中,艦艇甲在指揮中心(O)北偏西30°A處,艦艇乙在指揮中心南偏東70°B處,并且兩艦艇到指揮中心的距離相等.接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時的速度前進(jìn),1.5小時后,指揮中心觀測到甲、乙兩艦艇分別到達(dá)EF處且相距210海里.試求此時兩艦艇的位置與指揮中心(O處)形成的夾角EOF的大小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一居民樓底部B與山腳P位于同一水平線上,小李在P處測得居民樓頂A的仰角為60°,然后他從P處沿坡角為45°的山坡向上走到C處,這時點C與點A恰好在同一水平線上,點A、B、P、C在同一平面內(nèi).

(1)若BP=10m,求居民樓AB的高度;(精確到0.1,≈1.732)

(2)若PC=24m,求C、A之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算

(1)﹣t3×(﹣t)4×(﹣t)5

(2)(3a33+a3×a6﹣3a9

(3)

(4)(p﹣q)4÷(q﹣p)3×(p﹣q)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a7b=-2,則42a14b的值是( )

A. 0 B. 2 C. 4 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算

1a×a3×﹣a23

2)(1+2×﹣23π﹣30

3)(﹣0.2511×﹣412

4)(﹣2a22×a4﹣5a42

5)(x﹣y6÷y﹣x3×x﹣y2

6314×7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2-3x+2k=0的一個根是1,則k=

查看答案和解析>>

同步練習(xí)冊答案