【題目】在平面直角坐標系中,A,B,C三點的坐標分別為(-6,7)、(-3,0)、(0,3).
(1)畫出△ABC,并求△ABC的面積.
(2)在平面直角坐標系中平移△ABC,使點C經(jīng)過平移后的對應(yīng)點為C'(5,4),平移后△ABC得到△A'B'C',畫出平移后的△A'B'C',并寫出點A',B'的坐標
(3)P(-3,m)為△ABC中一點,將點P向右平移4個單位后,再向上平移6個單位得到點Q(n,-3),則m= n=
【答案】(1)見解析;(2)見解析,A′(﹣1,8),B′(2,1);(3)﹣9,1.
【解析】
(1)根據(jù)各點在坐標系中的位置描出各點,并順次連接即可,面積利用矩形面積減去三角形面積求解;
(2)根據(jù)圖形平移的性質(zhì)畫出平移后的△A′B′C′,并寫出點A′,B′的坐標即可;
(3)根據(jù)點平移的性質(zhì)即可得出m、n的值.
解:
(1)如圖,△ABC即為所求
;
作輔助線,過AF⊥x軸,垂足是F, AE⊥y軸,垂足是E.
△ABC的面積=S矩形AFOE-S△AFE- S△BCO- S△AEC
即面積是15.
(2)C(0,3)經(jīng)過平移后的對應(yīng)點為C′(5,4),則C點即為,向上平移1個單位,向右平移5個單位,相應(yīng)的A,B,也一樣平移即可得到:如圖,△A′B′C′即為所求,A′(﹣1,8),B′(2,1);
(3)∵P(﹣3,m)為△ABC中一點,將點P向右平移4個單位后,再向上平移6個單位得到點Q(n,﹣3),
∴n=﹣3+4=1,m+6=﹣3,
∴n=1,m=﹣9.
故答案為:﹣9,1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)與x軸的兩個交點的坐標分別是(-3,0),(2,0),則方程ax2+bx+c=0(a≠0)的解是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.動點M,N從點C同時出發(fā),均以每秒1cm的速度分別沿CA、CB向終點A,B移動,同時動點P從點B出發(fā),以每秒2cm的速度沿BA向終點A移動,連接PM,PN,設(shè)移動時間為t(單位:秒,0<t<2.5).
(1)當t為何值時,以A,P,M為頂點的三角形與△ABC相似?
(2)是否存在某一時刻t,使四邊形APNC的面積S有最小值?若存在,求S的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一個鈍角△ABC(其中∠ABC=120°)繞
點B順時針旋轉(zhuǎn)得△A1BC1,使得C點落在AB的延長線上的點C1處,連結(jié)AA1.
(1)寫出旋轉(zhuǎn)角的度數(shù);
(2)求證:∠A1AC=∠C1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標系中,A(a,0),C(b,4),且滿足(a+4)2+=0,過C作CB⊥x軸于B。
(1)求三角形ABC的面積;
(2)如圖2,若過B作BD∥AC交y軸于D,且AE,DE分別平分∠CAB,∠ODB,求∠AED的度數(shù);
(3)在y軸上是否存在點P,使得三角形ACP和三角形ABC的面積相等?若存在,求出P點的坐標;若不存在,請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出下列長度的四組線段:①1,,;②3,4,5;③6,7,8;④a2-1,a2+1,2a(a為大于1的正整數(shù)).其中能組成直角三角形的有( )
A.①②③B.①②④C.①②D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AD∥BC,AD= ,以對角線BD為直徑的⊙O與CD切于點D,與BC交于點E,∠ABD=30°,則圖中陰影部分的面積為 . (不取近似值)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的有( )
①在同一平面內(nèi)不相交的兩條線段必平行
②過兩條直線外一點,一定可做直線,使,且
③過直線外一點有且只有一條直線與已知直線平行
④兩直線被第三條直線所截得的同旁內(nèi)角的平分線互相垂直
A. 0個B. 1個C. 2個D. 3個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com