【題目】知識改變世界,科技改變生活.導航裝備的不斷更新極大方便了人們的出行.如圖,某校組織學生乘車到黑龍灘(用C表示)開展社會實踐活動,車到達A地后,發(fā)現(xiàn)C地恰好在A地的正北方向,且距離A地13千米,導航顯示車輛應沿北偏東60°方向行駛至B地,再沿北偏西37°方向行駛一段距離才能到達C地,求B、C兩地的距離.(參考數(shù)據(jù):sin53°≈,cos53°≈,tan53°≈)
【答案】(20-5)千米.
【解析】作BD⊥AC,設AD=x,在Rt△ABD中求得BD=x,在Rt△BCD中求得CD=x,由AC=AD+CD建立關于x的方程,解之求得x的值,最后由BC=可得答案.
過點B作BD⊥ AC,
依題可得:∠BAD=60°,∠CBE=37°,AC=13(千米),
∵BD⊥AC,
∴∠ABD=30°,∠CBD=53°,
在Rt△ABD中,設AD=x,
∴tan∠ABD=
即tan30°=,
∴BD=x,
在Rt△DCB中,
∴tan∠CBD=
即tan53°=,
∴CD=
∵CD+AD=AC,
∴x+=13,解得,x=
∴BD=12-,
在Rt△BDC中,
∴cos∠CBD=tan60°=,
即:BC=(千米),
故B、C兩地的距離為(20-5)千米.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過A(2,0),B(0,﹣6)兩點,
(1)求這個二次函數(shù)的解析式;
(2)設該二次函數(shù)的對稱軸與x軸交于點C,連接BA,BC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明和小強兩名運動愛好者周末相約到濱江大道進行跑步鍛煉.
(1)周六早上6點,小明和小強同時從家出發(fā),分別騎自行車和步行到離家距離分別為4500米和1200米的濱江大道入口匯合,結果同時到達.若小明每分鐘比小強多行220米,求小明和小強的速度分別是多少米/分?
(2)兩人到達濱江大道后約定先跑1000米再休息.小強的跑步速度是小明跑步速度的倍,兩人在同起點,同時出發(fā),結果小強先到目的地分鐘.
①當,時,求小強跑了多少分鐘?
②小明的跑步速度為_______米/分(直接用含的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】由于受到手機更新?lián)Q代的影響,某手機店經(jīng)銷的華為手機四月售價比三月每臺降價元.如果賣出相同數(shù)量的華為手機,那么三月銷售額為元,四月銷售額只有元.
(1)填表:
銷售額(元) | 單價(元臺) | 銷售手機的數(shù)量(臺) | |
三月 | ___________ | ||
四月 | __________ | ___________ |
(2)三、四月華為手機每臺售價各為多少元?
(3)為了提高利潤,該店計劃五月購進華為手機銷售,已知華為每臺進價為元,華為每臺進價為元,調(diào)進一部分資金購進這兩種手機共臺(其中華為有臺),在銷售中決定在四月售價礎上每售出一臺華為手機再返還顧客現(xiàn)金元,而華為按銷售價元銷售,若將這臺手機全部售出共獲得多少利潤?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,A,B為格點
(Ⅰ)AB的長等于__
(Ⅱ)請用無刻度的直尺,在如圖所示的網(wǎng)格中求作一點C,使得CA=CB且△ABC的面積等于,并簡要說明點C的位置是如何找到的__________________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P、M、N分別在等邊△ABC的各邊上,且MP⊥AB于點P,MN⊥BC于點M,PV⊥AC于點N,若AB=12cm,求CM的長為______cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一農(nóng)戶要建一矩形豬舍,豬舍的一邊利用長為12m的住房墻,另外三邊用25m長的建筑材料圍成,為了方便進出,在垂直于住房墻的一邊留一個1m寬的門.所圍成矩形豬舍的長、寬分別為多少時,豬舍的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,BD⊥AC于點D,CE⊥AB于點E,CE和BD交于點O,AO的延長線交BC于點F,則圖中全等的三角形有( )
A.8對B.7對C.6對D.5對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一段拋物線:y=﹣x(x﹣5)(0≤x≤5),記為C1,它與x軸交于點O,A1;將C1繞點A1旋轉180°得C2,交x軸于點A2;將C2繞點A2旋轉180°得C3,交x軸于點A3;…如此進行下去,得到一“波浪線”,若點P(2018,m)在此“波浪線”上,則m的值為( )
A. 4 B. ﹣4 C. ﹣6 D. 6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com