【題目】如圖,已知ABC中,AB=AC,BDAC于點(diǎn)DCEAB于點(diǎn)E,CEBD交于點(diǎn)OAO的延長(zhǎng)線交BC于點(diǎn)F,則圖中全等的三角形有(

A.8對(duì)B.7對(duì)C.6對(duì)D.5對(duì)

【答案】B

【解析】

從已知條件開始結(jié)合圖形利用全等的判定方法由易到難逐個(gè)尋找.

解:∵AB=AC,BD,CE分別是三角形的高,

∴∠AEC=ADB=90°,

∴∠ABD=ACE

Rt△ABDRt△ACE,

CE=BD,

AB=AC,

∴∠ABC=ACB,

又∠ABD=ACE,

∴∠BCE=CBD,

∴△BCE≌△CBD

同理:還有△ABF≌△ACF;△AEO≌△ADO△ABO≌△ACO;△OBE≌△OCD;△BFO≌△CFO,總共7對(duì).

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,下列結(jié)論:

;;;⑥當(dāng)時(shí),的增大而增大.

其中正確的說法有________(寫出正確說法的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長(zhǎng)為1.格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn)的坐標(biāo)分別是

(1)請(qǐng)?jiān)趫D中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;

(2)請(qǐng)畫出關(guān)于軸對(duì)稱的;

(3)請(qǐng)?jiān)?/span>軸上求作一點(diǎn),使的周長(zhǎng)最小,并寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l:y=x+1x軸于點(diǎn)B,交y軸于點(diǎn)A,過點(diǎn)AAB1ABx軸于點(diǎn)B1,過點(diǎn)B1B1A1x軸交直線l于點(diǎn)A2依次作下去,則點(diǎn)Bn的橫坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著幾何部分的學(xué)習(xí),小鵬對(duì)幾何產(chǎn)生了濃厚的興趣,他最喜歡利用手中的工具畫圖了如圖,作一個(gè),以O為圓心任意長(zhǎng)為半徑畫弧分別交OA,OB于點(diǎn)C和點(diǎn)D,將一副三角板如圖所示擺放,兩個(gè)直角三角板的直角頂點(diǎn)分別落在點(diǎn)C和點(diǎn)D,直角邊中分別有一邊與角的兩邊重合,另兩條直角邊相交于點(diǎn)P,連接小鵬通過觀察和推理,得出結(jié)論:OP平分

你同意小鵬的觀點(diǎn)嗎?如果你同意小鵬的觀點(diǎn),試結(jié)合題意寫出已知和求證,并證明.

已知:中,____________,________________________

求證:OP平分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADABC的中線,E,F分別是ADAD延長(zhǎng)線上的點(diǎn),且DE=DF,連接BF,CE.下列說法:①△BDF≌△CDE;②CE=BF; BFCE;④△ABDACD周長(zhǎng)相等.其中正確的有___________(只填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC,∠BAC=120°AC的垂直平分線交BC于點(diǎn)D,垂足為E,若DE=2cm,則BD的長(zhǎng)為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2﹣9ax+18a的圖象與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),圖象的頂點(diǎn)為C,直線AC交y軸于點(diǎn)D.

(1)連接BD,若∠BDO=∠CAB,求這個(gè)二次函數(shù)的表達(dá)式;

(2)是否存在以原點(diǎn)O為對(duì)稱軸的矩形CDEF?若存在,求出這個(gè)二次函數(shù)的表達(dá)式,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著”互聯(lián)網(wǎng)+“時(shí)代的到來,利用網(wǎng)絡(luò)呼叫專車的打車方式深受大眾歡迎.據(jù)了解,在非高峰期時(shí),某種專車所收取的費(fèi)用y(元)與行駛里程x(km)的函數(shù)圖象如圖所示.請(qǐng)根據(jù)圖象,回答下列問題:

(1)當(dāng)x≥5時(shí),求y與x之間的函數(shù)關(guān)系式;

(2)若王女士有一次在非高峰期乘坐這種專車外出,共付費(fèi)47元,求王女士乘坐這種專車的行駛里程.

查看答案和解析>>

同步練習(xí)冊(cè)答案