將5張分別畫有等邊三角形、直角三角形、平行四邊形、等腰梯形、正六邊形的卡片任意放入袋中,從中抽取一張,抽得中心對稱圖形的概率是


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
B
分析:先求出中心對稱圖形的個數(shù),再除以卡片總張數(shù)即為抽得中心對稱圖形的概率.
解答:根據(jù)中心對稱圖形的概念,知平行四邊形、正六邊形是中心對稱圖形;
所以從中隨機抽取一張,卡片上畫的是中心對稱圖形的概率為
故選B.
點評:本題主要考查(1)中心對稱圖形的概念:把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形.常見的中心對稱圖形有平行四邊形、圓、正方形、長方形等等.
(2)隨機事件A的概率P(A)=
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖所示,有兩種形狀不同的直角三角形紙片各兩塊,其中一種紙片的兩條直角邊長都為3,另一種紙片的兩條直角邊長分別為1和3.圖1、圖2、圖3是三張形狀、大小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1.
(1)請用三種方法(拼出的兩個圖形只要不全等就認為是不同的拼法)將圖中所給四塊直角三角形紙片拼成平行四邊形(非矩形),每種方法要把圖中所給的四塊直角三角形紙片全部用上,互不重疊且不留空隙,并把你所拼得的圖形按實際大小畫在圖1,圖2,圖3的方格紙上(要求:所畫圖形各頂點必須與方格紙中的小正方形頂點重合;畫圖時,要保留四塊直角三角形紙片的拼接痕跡);
(2)三種方法所拼得的平行四邊形的面積是否是定值?若是定值,請直接寫出這個定值;若不是定值,請直接寫出三種方法所拼得的平行四邊形的面積各是多少;
(3)三種方法所拼得的平行四邊形的周長是否是定值?若是定值,請直接寫出這個定值;若不是定值,請直接寫出三種方法所拼得的平行四邊形的周長各是多少.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:中考加速卷  數(shù)學 題型:044

如圖,正方形表示一張紙片,根據(jù)要求,需通過多次分割,將正方形紙片分割成若干個直角三角形,操作過程如下:第一次分割,將正方形紙片分成4個全等的直角三角形;第二次分割,將上次得到的直角三角形中的一個再分成4個全等直角三角形;以后按第二次分割的做法進行下去.

(1)請你設(shè)計出兩種符合題意的分割方案圖(要求在圖1、圖2中分別畫出每種方案的第一次和第二次的分割線,只要有一條分割線段不同,就視為一種不同方案,圖3供操作、實驗用).

(2)設(shè)正方形的邊長為a,請你就其中一種方案通過操作和觀察將第二、第三次分割后所得的最小直角三角形的面積S填入下表:

(3)在條件(2)下,請你猜想:分割所得的最小直角三角形的面積S與分割次數(shù)n有什么關(guān)系?用數(shù)學表達式表示出來.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年學大教育中考數(shù)學模擬試卷(三)(解析版) 題型:解答題

如圖所示,有兩種形狀不同的直角三角形紙片各兩塊,其中一種紙片的兩條直角邊長都為3,另一種紙片的兩條直角邊長分別為1和3.圖1、圖2、圖3是三張形狀、大小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1.
(1)請用三種方法(拼出的兩個圖形只要不全等就認為是不同的拼法)將圖中所給四塊直角三角形紙片拼成平行四邊形(非矩形),每種方法要把圖中所給的四塊直角三角形紙片全部用上,互不重疊且不留空隙,并把你所拼得的圖形按實際大小畫在圖1,圖2,圖3的方格紙上(要求:所畫圖形各頂點必須與方格紙中的小正方形頂點重合;畫圖時,要保留四塊直角三角形紙片的拼接痕跡);
(2)三種方法所拼得的平行四邊形的面積是否是定值?若是定值,請直接寫出這個定值;若不是定值,請直接寫出三種方法所拼得的平行四邊形的面積各是多少;
(3)三種方法所拼得的平行四邊形的周長是否是定值?若是定值,請直接寫出這個定值;若不是定值,請直接寫出三種方法所拼得的平行四邊形的周長各是多少.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年北京市門頭溝區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2009•門頭溝區(qū)一模)如圖所示,有兩種形狀不同的直角三角形紙片各兩塊,其中一種紙片的兩條直角邊長都為3,另一種紙片的兩條直角邊長分別為1和3.圖1、圖2、圖3是三張形狀、大小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1.
(1)請用三種方法(拼出的兩個圖形只要不全等就認為是不同的拼法)將圖中所給四塊直角三角形紙片拼成平行四邊形(非矩形),每種方法要把圖中所給的四塊直角三角形紙片全部用上,互不重疊且不留空隙,并把你所拼得的圖形按實際大小畫在圖1,圖2,圖3的方格紙上(要求:所畫圖形各頂點必須與方格紙中的小正方形頂點重合;畫圖時,要保留四塊直角三角形紙片的拼接痕跡);
(2)三種方法所拼得的平行四邊形的面積是否是定值?若是定值,請直接寫出這個定值;若不是定值,請直接寫出三種方法所拼得的平行四邊形的面積各是多少;
(3)三種方法所拼得的平行四邊形的周長是否是定值?若是定值,請直接寫出這個定值;若不是定值,請直接寫出三種方法所拼得的平行四邊形的周長各是多少.

查看答案和解析>>

科目:初中數(shù)學 來源:北京同步題 題型:解答題

如圖所示,有兩種形狀不同的直角三角形紙片各兩塊,其中一種紙片的兩條直角邊長都為3,另一種紙片的兩條直角邊長分別為1和3,圖1、圖2、圖3是三張形狀、大小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1。

(1)請用三種方法(拼出的兩個圖形只要不全等就認為是不同的拼法)將圖中所給四塊直角三角形紙片拼成平行四邊形(非矩形),每種方法要把圖中所給的四塊直角三角形紙片全部用上,互不重疊且不留空隙,并把你所拼得的圖形按實際大小畫在圖1、圖2、圖3的方格紙上(要求:所畫圖形各頂點必須與方格紙中的小正方形頂點重合;畫圖時,要保留四塊直角三角形紙片的拼接痕跡);
(2)三種方法所拼得的平行四邊形的面積是否是定值?若是定值,請直接寫出這個定值;若不是定值,請直接寫出三種方法所拼得的平行四邊形的面積各是多少;
(3)三種方法所拼得的平行四邊形的周長是否是定值?若是定值,請直接寫出這個定值;若不是定值,請直接寫出三種方法所拼得的平行四邊形的周長各是多少

查看答案和解析>>

同步練習冊答案