【題目】如圖,在矩形ABCD中,對角線AC與BD交于點(diǎn)O,且△ADO為等邊三角形,過點(diǎn)A作AE⊥BD于點(diǎn)E.
(1)求∠ABD的度數(shù);
(2)若BD=10,求AE的長.
【答案】(1)∠ABD=30°;(2)AE=.
【解析】
(1)根據(jù)矩形性質(zhì)得出∠DAB=90°,求出∠ADB=60°,代入∠ABD=180°-∠DAB-∠ADB求出即可;
(2)求出AD,根據(jù)等腰三角形性質(zhì)得出DE=EO,求出DE,根據(jù)勾股定理求出即可.
(1)∵四邊形ABCD是矩形,∴∠DAB=90°,
∵△ADO為等邊三角形,∴∠ADB=60°,
∴∠ABD=180°-∠DAB-∠ADB=30°;
(2)∵BD=10,∠BAD=90°,∠ABD=30°,
∴AD=BD=5,
∵△ADO為等邊三角形,∴AD=AO=DO=5,
∵AE⊥DO,∴DE=EO=DO=2.5,
在Rt△AED中,由勾股定理得AE=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,是對角線上的一點(diǎn),點(diǎn)在的延長線上,連接、、,延長交于點(diǎn),若,,則下列結(jié)論:①;②;③;④,其中正確的結(jié)論序號是( )
A.①②③B.①②④C.②③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖一次函數(shù)的圖象分別交x軸、y軸于點(diǎn)A,B,與反比例函數(shù)圖象在第二象限交于點(diǎn)C(m,6),軸于點(diǎn)D,OA=OD.
(1)求m的值和一次函數(shù)的表達(dá)式;
(2)在X軸上求點(diǎn)P,使△CAP為等腰三角形(求出所有符合條件的點(diǎn))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】生活經(jīng)驗(yàn)表明,靠墻擺放梯子時(shí),若梯子底端離墻的距離約為梯子長度的,則梯子比較穩(wěn)定,如圖,AB為一長度為6米的梯子.
(1)當(dāng)梯子穩(wěn)定擺放時(shí),它的頂端能達(dá)到5.7米高的墻頭嗎?
(2)如圖2,若梯子底端向左滑動(3﹣2)米,那么梯子頂端將下滑多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,平分,,是的中點(diǎn),,過作于,并延長至點(diǎn),使.
(1)求證:;
(2)若,求證:四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是正方形ABCD內(nèi)一點(diǎn),點(diǎn)P到點(diǎn)A,B和D的距離分別為1,2,.△ADP沿點(diǎn)A旋轉(zhuǎn)至△ABP′,連接PP′,并延長AP與BC相交于點(diǎn)Q.
(1)求證:△APP′是等腰直角三角形;
(2)求∠BPQ的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“龜兔首次賽跑”之后,輸了比賽的兔子總結(jié)慘痛教訓(xùn)后.決定和烏龜再賽一場.圖中的函數(shù)圖象刻畫了“龜兔再次賽跑”的故事(表示烏龜從起點(diǎn)出發(fā)所行的時(shí)間,表示烏龜所行的路程,表示兔子所行的路程.下列說法中:①“龜兔再次賽跑”的路程為1000米;②兔子和烏龜同時(shí)從起點(diǎn)出發(fā);③烏龜在途中休息了10分鐘;④兔子在途中750米處上了烏龜.正確的有:( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店分兩次購進(jìn)、兩種商品進(jìn)行銷售,兩次購進(jìn)同一種商品的進(jìn)價(jià)相同,具體情況如下表所示:
購進(jìn)數(shù)量(件) | 購進(jìn)所需費(fèi)用(元) | ||
|
| ||
第一次 | 30 | 40 | 3800 |
第二次 | 40 | 30 | 3200 |
(1)求、兩種商品每件的進(jìn)價(jià)分別是多少元?
(2)商場決定種商品以每件30元出售,種商品以每件100元出售.為滿足市場需求,需購進(jìn)、兩種商品共1000件,且種商品的數(shù)量不少于種商品數(shù)量的4倍,請你求出獲利最大的進(jìn)貨方案,并確定最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com