【題目】如圖,在RtABC中,∠ACB90°,AB5cmAC3cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿射線(xiàn)BC1cm/s的速度移動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)△ABP為等腰三角形時(shí),t的取值為_____

【答案】58

【解析】

當(dāng)△ABP為等腰三角形時(shí),分三種情況:當(dāng)ABBP時(shí);當(dāng)ABAP時(shí);當(dāng)BPAP時(shí),分別求出BP的長(zhǎng)度,繼而可求得t值.

RtABC中,BC2AB2AC2523216,

BC4cm);

當(dāng)ABBP時(shí),如圖1,t5

當(dāng)ABAP時(shí),如圖2BP2BC8cm,t8;

當(dāng)BPAP時(shí),如圖3APBPtcm,CP=(4tcmAC3cm,

RtACP中,AP2AC2+CP2,

所以

解得:t,

綜上所述:當(dāng)△ABP為等腰三角形時(shí),t5t8t

故答案為:5t8t

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了創(chuàng)建全國(guó)衛(wèi)生城市,某社區(qū)要清理一個(gè)衛(wèi)生死角內(nèi)的垃圾,租用甲、乙兩車(chē)運(yùn)送,兩車(chē)各運(yùn)12趟可完成,需支付運(yùn)費(fèi)4800元.已知甲、乙兩車(chē)單獨(dú)運(yùn)完此堆垃圾,乙車(chē)所運(yùn)趟數(shù)是甲車(chē)的2倍,且乙車(chē)每趟運(yùn)費(fèi)比甲車(chē)少200元.

(1)求甲、乙兩車(chē)單獨(dú)運(yùn)完此堆垃圾各需運(yùn)多少趟?

(2)若單獨(dú)租用一臺(tái)車(chē),租用哪臺(tái)車(chē)合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,BC為⊙O的直徑,點(diǎn)E為△ABC的內(nèi)心,連接AE并延長(zhǎng)交⊙O于D點(diǎn),連接BD并延長(zhǎng)至F,使得BDDF,連接CF、BE.

(1)求證:DBDE;

(2)求證:直線(xiàn)CF為⊙O的切線(xiàn)

(3)若CF4,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖、圖、圖,在矩形中,邊上的一點(diǎn),以為邊作平行四邊形,使點(diǎn)的對(duì)邊上,

如圖,試說(shuō)明:平行四邊形的面積與矩形的面積相等;

如圖,若平行四邊形是矩形,交于點(diǎn),試說(shuō)明:、、四點(diǎn)在同一個(gè)圓上;

如圖,若,平行四邊形是正方形,且的中點(diǎn),于點(diǎn),連接,判斷以為直徑的圓與直線(xiàn)的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E是正方形ABCD外一點(diǎn),連接AE、BEDE,過(guò)點(diǎn)AAE的垂線(xiàn)交DE于點(diǎn)P.若AEAP1,PB3.下列結(jié)論:APD≌△AEB;②EBED;點(diǎn)B到直線(xiàn)AE的距離為④S正方形ABCD8+.則正確結(jié)論的個(gè)數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)y=ax+b(a≠0)與y軸交與點(diǎn)C,與雙曲線(xiàn)y=(m≠0)交于A、B兩點(diǎn),ADy軸于點(diǎn)D,連接BD,已知OC=AD=2,cosACD=

(1)求直線(xiàn)AB和雙曲線(xiàn)的解析式.

(2)求△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ABC=45°,過(guò)CAB邊上的高CD,HBC邊上的中點(diǎn),連接DH,CD上有一點(diǎn)F,且AD=DF,連接BF并延長(zhǎng)交ACE,交DHG.

(1)AC=5,DH=2,求DF的長(zhǎng).

(2)AB=CB,求證:BG=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線(xiàn)y=-x+1與拋物線(xiàn)y=ax2+bx+c(a≠0)相交于點(diǎn)A(1,0)和點(diǎn)D(-4,5),并與y軸交于點(diǎn)C,拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn)x=-1,且拋物線(xiàn)與x軸交于另一點(diǎn)B.

(1)求該拋物線(xiàn)的函數(shù)表達(dá)式;

(2)若點(diǎn)E是直線(xiàn)下方拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),求出△ACE面積的最大值;

(3)如圖2,若點(diǎn)M是直線(xiàn)x=-1的一點(diǎn),點(diǎn)N在拋物線(xiàn)上,以點(diǎn)A,D,M,N為頂點(diǎn)的四邊形能否成為平行四邊形?若能,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校詩(shī)詞知識(shí)競(jìng)賽培訓(xùn)活動(dòng)中,在相同條件下對(duì)甲、乙兩名學(xué)生進(jìn)行了10次測(cè)驗(yàn),他們的10次成績(jī)?nèi)缦拢▎挝唬悍郑?/span>

整理,分析過(guò)程如下:

成績(jī)

學(xué)生

0

1

4

5

0

0

1

1

4

2

1

1

(1)兩組數(shù)據(jù)的極差、平均數(shù)、中位數(shù)、眾數(shù)、方差如下表所示,請(qǐng)補(bǔ)充完整:

學(xué)生

極差

平均數(shù)

中位數(shù)

眾數(shù)

方差

83.7

86

13.21

24

83.7

82

46.21

(2)若從甲、乙兩人中選擇一人參加知識(shí)競(jìng)賽,你會(huì)選 (填“甲”或“乙”),理由為

查看答案和解析>>

同步練習(xí)冊(cè)答案