【題目】如圖,點(diǎn)E是正方形ABCD外一點(diǎn),連接AE、BE和DE,過(guò)點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=3.下列結(jié)論:①△APD≌△AEB;②EB⊥ED;③點(diǎn)B到直線AE的距離為;④S正方形ABCD=8+.則正確結(jié)論的個(gè)數(shù)是( 。
A.1B.2C.3D.4
【答案】C
【解析】
①易知AE=AP,AB=AD,所以只需證明∠EAB=∠PAD即可用SAS說(shuō)明△APD≌△AEB;
②易知∠AEB=∠APD=135°,則∠BEP=∠AEB﹣∠AEP=135°﹣45°=90°,所以EB⊥ED;
③在Rt△BEP中利用勾股定理求出BE值為,根據(jù)垂線段最短可知B到直線AE的距離小于;則③錯(cuò)誤;
④要求正方形的面積,則需知道正方形一條邊的平方值即可,所以在△AEB中,∠AEB=135°,AE=1,BE=,過(guò)點(diǎn)A作AH⊥BE交BE延長(zhǎng)線于H點(diǎn),在Rt△AHB中利用勾股定理AB2=BH2+AH2即可.
∵四邊形ABCD是正方形,
∴AD=AB,∠DAB=90°.
∴∠DAP+∠BAP=90°.
又∠EAP+∠BAP=90°,
∴∠EAP=∠DAP.
又AE=AP,
∴△APD≌△AEB(SAS).
所以①正確;
∵AE=AP,∠EAP=90°,
∴∠APE=∠AEP=45°,
∴∠APD=180°﹣45°=135°.
∵△APD≌△AEB,
∴∠AEB=∠APD=135°,
∴∠BEP=135°﹣45°=90°,
即EB⊥ED,②正確;
在等腰Rt△AEP中,利用勾股定理可得EP=,
在Rt△BEP中,利用勾股定理可得BE=.
∵B點(diǎn)到直線AE的距離小于BE,所以點(diǎn)B到直線AE的距離為是錯(cuò)誤的,
所以③錯(cuò)誤;
在△AEB中,∠AEB=135°,AE=1,BE=,
如圖所示,過(guò)點(diǎn)A作AH⊥BE交BE延長(zhǎng)線于H點(diǎn).
在等腰Rt△AHE中,可得AH=HE=AE=.
所以BH=.
在Rt△AHB中利用勾股定理可得AB2=BH2+AH2,
即AB2=()2+()2=8+,
所以S正方形ABCD=8+.
所以④正確.
所以只有①和②、④的結(jié)論正確.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】教室里有4排日光燈,每排燈各由一個(gè)開(kāi)關(guān)控制,但燈的排數(shù)序號(hào)與開(kāi)關(guān)序號(hào)不一定對(duì)應(yīng),其中控制第二排燈的開(kāi)關(guān)已壞(閉合開(kāi)關(guān)時(shí)燈也不亮).
(1)將4個(gè)開(kāi)關(guān)都閉合時(shí),教室里所有燈都亮起的概率是 ;
(2)在4個(gè)開(kāi)關(guān)都閉合的情況下,不知情的雷老師準(zhǔn)備做光學(xué)實(shí)驗(yàn),由于燈光太強(qiáng),他需要關(guān)掉部分燈,于是隨機(jī)將4個(gè)開(kāi)關(guān)中的2個(gè)斷開(kāi),請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法,求恰好關(guān)掉第一排與第三排燈的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】建立模型:
如圖1,等腰Rt△ABC中,∠ABC=90°,CB=BA,直線ED經(jīng)過(guò)點(diǎn)B,過(guò)A作AD⊥ED于D,過(guò)C作CE⊥ED于E.則易證△ADB≌△BEC.這個(gè)模型我們稱之為“一線三垂直”.它可以把傾斜的線段AB和直角∠ABC轉(zhuǎn)化為橫平豎直的線段和直角,所以在平面直角坐標(biāo)系中被大量使用.
模型應(yīng)用:
(1)如圖2,點(diǎn)A(0,4),點(diǎn)B(3,0),△ABC是等腰直角三角形.
①若∠ABC=90°,且點(diǎn)C在第一象限,求點(diǎn)C的坐標(biāo);
②若AB為直角邊,求點(diǎn)C的坐標(biāo);
(2)如圖3,長(zhǎng)方形MFNO,O為坐標(biāo)原點(diǎn),F的坐標(biāo)為(8,6),M、N分別在坐標(biāo)軸上,P是線段NF上動(dòng)點(diǎn),設(shè)PN=n,已知點(diǎn)G在第一象限,且是直線y=2x一6上的一點(diǎn),若△MPG是以G為直角頂點(diǎn)的等腰直角三角形,請(qǐng)直接寫(xiě)出點(diǎn)G的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P的坐標(biāo)為(-3,4),作出點(diǎn)P關(guān)于x軸對(duì)稱的點(diǎn)P1,稱為第1次變換;再作出點(diǎn)P1關(guān)于y軸對(duì)稱的點(diǎn)P2,稱為第2次變換;再作點(diǎn)P2關(guān)于x軸對(duì)稱的點(diǎn)P3,稱為第3次變換,…,依次類推,則第2019次變換得到的點(diǎn)P2019的坐標(biāo)為 ____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,、、.
(1)請(qǐng)畫(huà)出關(guān)于軸對(duì)稱的(其中、、分別是、、的對(duì)應(yīng)點(diǎn))并直接寫(xiě)出點(diǎn)的坐標(biāo)為 .
(2)若直線經(jīng)過(guò)點(diǎn)且與軸平行,則點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo)為 .
(3)在軸上存在一點(diǎn),使最大,則點(diǎn)的坐標(biāo)為 .
(4)第一象限有一點(diǎn),在軸上找一點(diǎn)使最短,畫(huà)出最短路徑,保留作圖跡.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=5cm,AC=3cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿射線BC以1cm/s的速度移動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)△ABP為等腰三角形時(shí),t的取值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過(guò)點(diǎn)的直線與直線相交于點(diǎn).
(1)直線的關(guān)系式為 ;直線的關(guān)系式為 (直接寫(xiě)出答案,不必寫(xiě)過(guò)程).
(2)求的面積.
(3)若有一動(dòng)點(diǎn)沿路線運(yùn)動(dòng),當(dāng)時(shí),求點(diǎn) 坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABD是⊙O的內(nèi)接三角形,E是弦BD的中點(diǎn),點(diǎn)C是⊙O外一點(diǎn)且∠DBC=∠A,連接OE延長(zhǎng)與圓相交于點(diǎn)F,與BC相交于點(diǎn)C.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為6,BC=8,求弦BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠AOB=45°,求作∠AOP=22.5°,作法:
(1)以O(shè)為圓心,任意長(zhǎng)為半徑畫(huà)弧分別交OA,OB于點(diǎn)N,M;
(2)分別以N,M為圓心,以O(shè)M長(zhǎng)為半徑在角的內(nèi)部畫(huà)弧交于點(diǎn)P;
(3)作射線OP,則OP為∠AOB的平分線,可得∠AOP=22.5°
根據(jù)以上作法,某同學(xué)有以下3種證明思路:
①可證明△OPN≌△OPM,得∠POA=∠POB,可得;
②可證明四邊形OMPN為菱形,OP,MN互相垂直平分,得∠POA=∠POB,可得;
③可證明△PMN為等邊三角形,OP,MN互相垂直平分,從而得∠POA=∠POB,可得.
你認(rèn)為該同學(xué)以上3種證明思路中,正確的有( 。
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com