【題目】如圖,在邊長(zhǎng)為1的正方形ABCD中,動(dòng)點(diǎn)F,E分別以相同的速度從D,C兩點(diǎn)同時(shí)出發(fā)向C和B運(yùn)動(dòng)(任何一個(gè)點(diǎn)到達(dá)即停止),過(guò)點(diǎn)P作PM∥CD交BC于M點(diǎn),PN∥BC交CD于N點(diǎn),連接MN,在運(yùn)動(dòng)過(guò)程中, ①AE和BF的位置關(guān)系為;
②線段MN的最小值為 .
【答案】AE⊥BF;
【解析】解:①如圖,∵動(dòng)點(diǎn)F,E的速度相同, ∴DF=CE,
又∵CD=BC,
∴CF=BE,
在△ABE和△BCF中,
,
∴△ABE≌△BCF(SAS),
∴∠BAE=∠CBF,AE=BF,
∵∠BAE+∠BEA=90°,
∴∠CBF+∠BEA=90°,
∴∠APB=90°,
∴AE⊥BF,②∵點(diǎn)P在運(yùn)動(dòng)中保持∠APB=90°,
∴點(diǎn)P的路徑是一段以AB為直徑的弧,
設(shè)AB的中點(diǎn)為G,連接CG交弧于點(diǎn)P,此時(shí)CP的長(zhǎng)度最小,
在Rt△BCG中,CG= = = ,
∵PG= AB= ,
∴CP=CG﹣PG= ﹣ = ,
即線段CP的最小值為 ,
所以答案是AE⊥BF, .
【考點(diǎn)精析】利用正方形的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角三角板的直角頂點(diǎn)O在直線AB上,OC,OD是三角板的兩條直角邊,OE平分∠AOD.
(1)若∠COE=20°,則∠BOD= ;若∠COE=α,則∠BOD= (用含α的代數(shù)式表示)
(2)當(dāng)三角板繞O逆時(shí)針旋轉(zhuǎn)到圖2的位置時(shí),其它條件不變,試猜測(cè)∠COE與∠BOD之間有怎樣的數(shù)量關(guān)系?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛出租車從A地出發(fā),在一條東西走向的街道上往返,每次行駛的路程(記向東為正)記錄如下(x>9且x<26,單位:km)
(1)說(shuō)出這輛出租車每次行駛的方向.
(2)求經(jīng)過(guò)連續(xù)4次行駛后,這輛出租車所在的位置.
(3)這輛出租車一共行駛了多少路程?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)軸上三點(diǎn)M,O,N對(duì)應(yīng)的數(shù)分別為-1,0,3,點(diǎn)P為數(shù)軸上任意一點(diǎn),其對(duì)應(yīng)的數(shù)為x.
(1)MN的長(zhǎng)為 ;
(2)如果點(diǎn)P到點(diǎn)M、點(diǎn)N的距離相等,那么x的值是 ;
(3)數(shù)軸上是否存在點(diǎn)P,使點(diǎn)P到點(diǎn)M、點(diǎn)N的距離之和是8?若存在,直接寫(xiě)出x的值;若不存在,請(qǐng)說(shuō)明理由.
(4)如果點(diǎn)P以每分鐘1個(gè)單位長(zhǎng)度的速度從點(diǎn)O向左運(yùn)動(dòng),同時(shí)點(diǎn)M和點(diǎn)N分別以每分鐘2個(gè)單位長(zhǎng)度和每分鐘3個(gè)單位長(zhǎng)度的速度也向左運(yùn)動(dòng).設(shè)t分鐘時(shí)點(diǎn)P到點(diǎn)M、點(diǎn)N的距離相等,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖示,三角形ABC是等邊三角形,D是BC邊上的一點(diǎn),三角形ABD經(jīng)過(guò)旋轉(zhuǎn)后到達(dá)三角形ACE的位置.
(1)旋轉(zhuǎn)中心是哪一點(diǎn)?
(2)旋轉(zhuǎn)了多少度?
(3)如果M是AB的中點(diǎn),那么經(jīng)過(guò)上述旋轉(zhuǎn)后,點(diǎn)M到了什么位置?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,先把梯形ABCD向左平移6個(gè)單位長(zhǎng)度得到梯形A1B1C1D1.
(1)請(qǐng)你在平面直角坐標(biāo)系中畫(huà)出梯形A1B1C1D1 ;
(2)以點(diǎn)C1為旋轉(zhuǎn)中心,把(1)中畫(huà)出的梯形繞點(diǎn)C1順時(shí)針?lè)较蛐D(zhuǎn) 得到梯形A2B2C2D2 ,請(qǐng)你畫(huà)出梯形A2B2C2D2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1, O為正方形ABCD的中心,分別延長(zhǎng)OA,OD到點(diǎn)F,E,使OF=2OA,OE=2OD,連接EF,將△FOE繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)角α得到△FOE,連接AE,BF(如圖2).
(1)探究AE與BF的數(shù)量關(guān)系,并給予證明;
(2)當(dāng)α=30°時(shí),求證: △AOE為直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過(guò)A點(diǎn)作BC的平行線,交CE的延長(zhǎng)線于點(diǎn)F,且AF=BD,連接BF.
(1)求證:BD=CD;(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l1:y1=﹣x+m與y軸交于點(diǎn)A(0,6),直線l2:y=kx+1分別與x軸交于點(diǎn)B(﹣2,0),與y軸交于點(diǎn)C,兩條直線交點(diǎn)記為D.
(1)m= ,k= ;
(2)求兩直線交點(diǎn)D的坐標(biāo);
(3)根據(jù)圖象直接寫(xiě)出y1<y2時(shí)自變量x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com