如圖1,平行四邊形ABCD的對角線AC,BD交于點P,E為BC的中點,過E點的圓O與BD相切于點P,圓O與直線AC,BC分別交于點F,G.
(1)求證:△PCD△EPF;
(2)如果AB=AD,AC=6,BD=8(如圖2).求圓O的直徑.
(1)證明:∵四邊形ABCD是平行四邊形,
∴BP=DP,
又∵BE=CE,
∴PEDC,
∴∠CPE=∠PCD,
∵BD切⊙O于P,
∴∠DPC=∠PEF,
∴△PCD△EPF;

(2)∵平行四邊形ABCD中,AB=AD,
∴平行四邊形ABCD為菱形.
∴AC⊥BD,PB=
1
2
,
BD=
1
2
×8=4,PC=
1
2
,
AC=
1
2
×6=3,
∴BC=5,
∴BE=CE=
5
2
,
∵⊙O切BD于P,AC⊥BD,
∴PF為⊙O的直徑,
∵PE2=BE•BG,
42=
5
2
•BG
,
BG=
32
5
,
∴OG=BG-BC=
7
5
,
∵PC•CF=EC•CG,
3CF=
5
2
×
7
5
,
CF=
7
6

∴⊙O的直徑為3+
7
6
=
25
6
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角坐標系中,點O′的坐標為(-2,0),⊙O′與x軸相交于原點O和點A,又B,C兩點的坐標分別為(0,b),(1,0).
(1)當b=3時,求經(jīng)過B,C兩點的直線的解析式;
(2)當B點在y軸上運動時,直線BC與⊙O′有哪幾種位置關(guān)系?并求每種位置關(guān)系時b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,AB是⊙O的直徑,BC切⊙O于點B,AD的延長線交BC于點E,若∠C=25°,則∠A=______度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在△ABC中,∠C=90度.以BC為直徑作⊙O與斜邊AB交于點D,且AD=3.2cm,BD=1.8cm,則AC=______cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,⊙O為△BCD的外接圓,過C點作⊙O的切線交BD的延長線于A,∠ACB=75°,∠ABC=45°,則
CD
DB
的值為( 。
A.
3
2
B.2C.
2
D.
2
2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

一個鋼管放在V形架內(nèi),如圖是其截面圖,O為鋼管的圓心.如果鋼管的半徑為25cm,∠MPN=60°,則OP=( 。
A.50cmB.25
3
cm
C.
50
3
3
cm
D.50
3
cm

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,Rt△ABC中,∠ACB=90°,AB=5,BC=3,以點C為圓心的圓與AB相切.
(1)求⊙C的半徑;
(2)O是AB的中點,請判斷點O與⊙C的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知AB、AC分別為⊙O的直徑和弦,D為弧BC的中點,DE⊥AC于E.
(1)求證:DE是⊙O的切線.
(2)若OB=5,BC=6,求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在直角坐標系中,⊙O的半徑為1,則直線y=-x+
2
與⊙O的位置關(guān)系是( 。
A.相離B.相交
C.相切D.以下三種情形都有可能

查看答案和解析>>

同步練習冊答案