【題目】如圖,已知反比例函數(shù)y=(x>0,k是常數(shù)的圖象經(jīng)過(guò)點(diǎn)A(1,4),點(diǎn)B(m,n),其中m>1,AM⊥x軸,垂足為M,BN⊥y軸,垂足為N,AMBN的交點(diǎn)為C.

(1)求出反比例函數(shù)解析式;

(2)求證:△ACB∽△NOM.

(3)延長(zhǎng)線段AB,x軸于點(diǎn)D,若點(diǎn)B恰好為AD的中點(diǎn),求此時(shí)點(diǎn)B的坐標(biāo).

【答案】(1)(2)詳見(jiàn)解析;(3)B(2,2)

【解析】

(1)將點(diǎn)A的坐標(biāo)代入反比例函數(shù)y=(x>0,k是常數(shù)中,即可求得;

(2)由于∠ACB =∠NOM = 90°,所以要證ΔACB∽ΔNOM,只要即可,由已知分別求出,證明它們相等即可;

(3)由AM⊥x軸求得AM=4,由BN//OD可得,點(diǎn)C是AM的中點(diǎn),則CM=2,則點(diǎn)B的縱坐標(biāo)為2,從而求得點(diǎn)B橫坐標(biāo).

(1)∵反比例函數(shù)y=(x>0,k是常數(shù)的圖象經(jīng)過(guò)點(diǎn)A(1,4),

∴k=xy=4,

∴反比例函數(shù)解析式:y=(x>0);

(2) ∵ B(m,n),A(1,4),∴AC = 4–n,BC = m–1,ON = n,OM = 1.
=.
∵點(diǎn)B(m,n)在y=上,

∴m= .

=m-1.
又∵.

.
又∵∠ACB =∠NOM = 90°,

∴ ΔACB∽ΔNOM.

(3) ∵AM⊥x軸,且A(1,4),

∴點(diǎn)C的橫坐標(biāo)1,AM=4,

∵BN//x軸,點(diǎn)B是AD的中點(diǎn),

∴點(diǎn)C是AM的中點(diǎn),

∴CM=2,即點(diǎn)B的縱坐標(biāo)為2,

又∵點(diǎn)B在反比例函數(shù)y=上,

點(diǎn)B縱坐標(biāo)為2,

∴點(diǎn)B的坐標(biāo)為(2,2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正六邊形A1B1C1D1E1F1的邊長(zhǎng)為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,按這樣的規(guī)律進(jìn)行下去,A11B11C11D11E11F11的邊長(zhǎng)為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店銷(xiāo)售A型和B型兩種電腦,其中A型電腦每臺(tái)的利潤(rùn)為400元,B型電腦每臺(tái)的利潤(rùn)為500元.該商店計(jì)劃再一次性購(gòu)進(jìn)兩種型號(hào)的電腦共100臺(tái),其中B型電腦的進(jìn)貨量不超過(guò)A型電腦的2倍,設(shè)購(gòu)進(jìn)A型電腦x臺(tái),這100臺(tái)電腦的銷(xiāo)售總利潤(rùn)為y元.

(1)求y關(guān)于x的函數(shù)關(guān)系式;

(2)該商店購(gòu)進(jìn)A型、B型電腦各多少臺(tái),才能使銷(xiāo)售總利潤(rùn)最大,最大利潤(rùn)是多少?

(3)實(shí)際進(jìn)貨時(shí),廠家對(duì)A型電腦出廠價(jià)下調(diào)a(0<a<200)元,且限定商店最多購(gòu)進(jìn)A型電腦60臺(tái),若商店保持同種電腦的售價(jià)不變,請(qǐng)你根據(jù)以上信息,設(shè)計(jì)出使這100臺(tái)電腦銷(xiāo)售總利潤(rùn)最大的進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)(3,-2)在反比例函數(shù)的圖像上,則下列各點(diǎn)中,也在反比例函數(shù)圖像上的是(

A. (3,-3) B. (-2,3) C. (1,6) D. (-2,-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料,并解答問(wèn)題.

材料:將分式拆分成一個(gè)整式與一個(gè)分式(分子為整數(shù))的和的形式.

解:由分母為﹣x2+1,可設(shè)﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b則﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)

∵對(duì)應(yīng)任意x,上述等式均成立,∴,∴a=2,b=1

==+=x2+2+這樣,分式被拆分成了一個(gè)整式x2+2與一個(gè)分式的和.

解答:

(1)將分式 拆分成一個(gè)整式與一個(gè)分式(分子為整數(shù))的和的形式.

(2)試說(shuō)明的最小值為8.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A是反比例函數(shù)的圖象上的一個(gè)動(dòng)點(diǎn),連接OA,若將線段O A繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段OB,則點(diǎn)B所在圖象的函數(shù)表達(dá)式為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,甲、乙為兩座建筑物,它們之間的水平距離BC為30m,在A點(diǎn)測(cè)得D點(diǎn)的仰角EAD為45°,在B點(diǎn)測(cè)得D點(diǎn)的仰角CBD為60°,求這兩座建筑物的高度(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,C是⊙O上一點(diǎn),過(guò)點(diǎn)C的直線交AB的延長(zhǎng)線于點(diǎn)D,AE⊥DC,垂足為E,FAE與⊙O的交點(diǎn),AC平分∠BAE,連接OC

(1)求證:DE是⊙O的切線;

(2)若⊙O半徑為4,∠D=30°,求圖中陰影部分的面積(結(jié)果用含π和根號(hào)的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】光華農(nóng)機(jī)租賃公司共有50臺(tái)聯(lián)合收割機(jī),其中甲型20臺(tái),乙型30臺(tái),先將這50臺(tái)聯(lián)合收割機(jī)派往A、B兩地區(qū)收割小麥,其中30臺(tái)派往A地區(qū),20臺(tái)派往B地區(qū).兩地區(qū)與該農(nóng)機(jī)租賃公司商定的每天的租賃價(jià)格見(jiàn)表:

每臺(tái)甲型收割機(jī)的租金

每臺(tái)乙型收割機(jī)的租金

A地區(qū)

1800

1600

B地區(qū)

1600

1200

(1)設(shè)派往A地區(qū)x臺(tái)乙型聯(lián)合收割機(jī),租賃公司這50臺(tái)聯(lián)合收割機(jī)一天獲得的租金為y(元),求yx間的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;

(2)若使農(nóng)機(jī)租賃公司這50臺(tái)聯(lián)合收割機(jī)一天獲得的租金總額不低于79 600元,說(shuō)明有多少種分配方案,并將各種方案設(shè)計(jì)出來(lái);

(3)如果要使這50臺(tái)聯(lián)合收割機(jī)每天獲得的租金最高,請(qǐng)你為光華農(nóng)機(jī)租賃公司提一條合理化建議.

查看答案和解析>>

同步練習(xí)冊(cè)答案