某商品的進(jìn)價(jià)為每件40元,售價(jià)為每件50元,每個(gè)月可賣出210件;如果每件商品的售價(jià)每上漲1元,則每個(gè)月少賣10件(每件售價(jià)不能高于65元).設(shè)每件商品的售價(jià)上漲x元(x為正整數(shù)),每個(gè)月的銷售利潤(rùn)為y元.
(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;
(2)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤(rùn)?最大的月利潤(rùn)是多少元?
(3)每件商品的售價(jià)定為多少元時(shí),每個(gè)月的利潤(rùn)恰為2200元?根據(jù)以上結(jié)論,請(qǐng)你直接寫出售價(jià)在什么范圍時(shí),每個(gè)月的利潤(rùn)不低于2200元?
【答案】分析:(1)根據(jù)題意可知y與x的函數(shù)關(guān)系式.
(2)根據(jù)題意可知y=-10-(x-5.5)2+2402.5,當(dāng)x=5.5時(shí)y有最大值.
(3)設(shè)y=2200,解得x的值.然后分情況討論解.
解答:解:(1)由題意得:y=(210-10x)(50+x-40)
=-10x2+110x+2100(0<x≤15且x為整數(shù));
(2)由(1)中的y與x的解析式配方得:y=-10(x-5.5)2+2402.5.
∵a=-10<0,∴當(dāng)x=5.5時(shí),y有最大值2402.5.
∵0<x≤15,且x為整數(shù),
當(dāng)x=5時(shí),50+x=55,y=2400(元),當(dāng)x=6時(shí),50+x=56,y=2400(元)
∴當(dāng)售價(jià)定為每件55或56元,每個(gè)月的利潤(rùn)最大,最大的月利潤(rùn)是2400元.
(3)當(dāng)y=2200時(shí),-10x2+110x+2100=2200,解得:x1=1,x2=10.
∴當(dāng)x=1時(shí),50+x=51,當(dāng)x=10時(shí),50+x=60.
∴當(dāng)售價(jià)定為每件51或60元,每個(gè)月的利潤(rùn)為2200元.
當(dāng)售價(jià)不低于51或60元,每個(gè)月的利潤(rùn)為2200元.
當(dāng)售價(jià)不低于51元且不高于60元且為整數(shù)時(shí),每個(gè)月的利潤(rùn)不低于2200元(或當(dāng)售價(jià)分別為51,52,53,54,55,56,57,58,59,60元時(shí),每個(gè)月的利潤(rùn)不低于2200元).
點(diǎn)評(píng):本題考查二次函數(shù)的實(shí)際應(yīng)用,借助二次函數(shù)解決實(shí)際問(wèn)題,是一道綜合題.