【題目】如圖,已知拋物線經(jīng)過點(diǎn)、.
(1)求拋物線的解析式,并寫出頂點(diǎn)的坐標(biāo);
(2)若點(diǎn)在拋物線上,且點(diǎn)的橫坐標(biāo)為8,求四邊形的面積
(3)定點(diǎn)在軸上,若將拋物線的圖象向左平移2各單位,再向上平移3個(gè)單位得到一條新的拋物線,點(diǎn)在新的拋物線上運(yùn)動(dòng),求定點(diǎn)與動(dòng)點(diǎn)之間距離的最小值(用含的代數(shù)式表示)
【答案】(1),;(2)36;(3)
【解析】
(1)函數(shù)的表達(dá)式為:y=(x+1)(x-5),即可求解;
(2)S四邊形AMBC=AB(yC-yD),即可求解;
(3)拋物線的表達(dá)式為:y=x2,即可求解.
(1)函數(shù)的表達(dá)式為:y=(x+1)(x-5)=(x2-4x-5)=,
點(diǎn)M坐標(biāo)為(2,-3);
(2)當(dāng)x=8時(shí),y=(x+1)(x-5)=9,即點(diǎn)C(8,9),
S四邊形AMBC=AB(yC-yD)=×6×(9+3)=36;
(3)y=(x+1)(x-5)=(x2-4x-5)=(x-2)2-3,
拋物線的圖象向左平移2個(gè)單位,再向上平移3個(gè)單位得到一條新的拋物線,
則新拋物線表達(dá)式為:y=x2,
則定點(diǎn)D與動(dòng)點(diǎn)P之間距離PD=,
∵>0,PD有最小值,當(dāng)x2=3m-時(shí),
PD最小值d=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小紅玩抽卡片和旋轉(zhuǎn)盤游戲,有兩張正面分別標(biāo)有數(shù)字1,﹣2的不透明卡片,背面完全相同;轉(zhuǎn)盤被平均分成3個(gè)相等的扇形,并分別標(biāo)有數(shù)字﹣1,3,4(如圖所示),小云把卡片背面朝上洗勻后從中隨機(jī)抽出一張,記下卡片上的數(shù)字;然后轉(zhuǎn)動(dòng)轉(zhuǎn)盤,轉(zhuǎn)盤停止后,記下指針?biāo)趨^(qū)域的數(shù)字(若指針在分格線上,則重轉(zhuǎn)一次,直到指針指向某一區(qū)域?yàn)橹梗?qǐng)用列表或樹狀圖的方法(只選其中一種)求出兩個(gè)數(shù)字之積為負(fù)數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過A(﹣3,0),B(1,0),C(0,3)三點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖1,P為拋物線上在第二象限內(nèi)的一點(diǎn),若△PAC面積為3,求點(diǎn)P的坐標(biāo);
(3)如圖2,D為拋物線的頂點(diǎn),在線段AD上是否存在點(diǎn)M,使得以M,A,O為頂點(diǎn)的三角形與△ABC相似?若存在,求點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,∠DAF=300,M是CD上一點(diǎn),AM的延長(zhǎng)線交BC的延長(zhǎng)線于點(diǎn)F,BE垂直平分AM,DG∥AF,MG∥DE.
(1)判斷四邊形DEMG的形狀,并說明理由;
(2)求證:△ADM≌△FCM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象經(jīng)過坐標(biāo)原點(diǎn),與軸交于點(diǎn)(,),若在拋物線上存在點(diǎn),滿足,則點(diǎn)的坐標(biāo)為_____________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一副三角板按如圖甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜邊AB=6cm,DC=7cm.把三角板DCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)15°得到△D1CE1(如圖乙).這時(shí)AB與CD1相交于點(diǎn)O、與D1E1相交于點(diǎn)F.
(1)求∠OFE1的度數(shù);
(2)求線段AD1的長(zhǎng);
(3)若把△DCE繞著點(diǎn)C順時(shí)針再旋轉(zhuǎn)30°得△D2CE2,這時(shí)點(diǎn)B在△D2CE2的內(nèi)部、外部、還是邊上?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,點(diǎn)E是BC的中點(diǎn),點(diǎn)F是線段AE上一點(diǎn),BF的延長(zhǎng)線交CD于點(diǎn)G.
(1)若,則______.
(2)若,求的值.(用含有m的代數(shù)式表示,寫出解答過程)
(3)如圖2,四邊形ABCD中,DC//AB,點(diǎn)E是BC的延長(zhǎng)線上的一點(diǎn),AE是BD相交于點(diǎn)F,若,,則____.(直接用含a,b的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣2a與x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸將于點(diǎn)C(0,﹣).
(1)求拋物線的解析式;
(2)若點(diǎn)D(2,n)是拋物線上的一點(diǎn),在y軸左側(cè)的拋物線上存在點(diǎn)T,使△TAD的面積等于△TBD的面積,求出所有滿足條件的點(diǎn)T的坐標(biāo);
(3)直線y=kx﹣k+2,與拋物線交于兩點(diǎn)P、Q,其中在點(diǎn)P在第一象限,點(diǎn)Q在第二象限,PA交y軸于點(diǎn)M,QA交y軸于點(diǎn)N,連接BM、BN,試判斷△BMN的形狀并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與直線相交于,兩點(diǎn),且拋物線經(jīng)過點(diǎn)
(1)求拋物線的解析式;
(2)點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A. 點(diǎn)B重合),過點(diǎn)P作直線PD⊥x軸于點(diǎn)D,交直線AB于點(diǎn)E.當(dāng)PE=2ED時(shí),求P點(diǎn)坐標(biāo);
(3)點(diǎn)P是直線上方的拋物線上的一個(gè)動(dòng)點(diǎn),求的面積最大時(shí)的P點(diǎn)坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com