【題目】如圖為放置在水平桌面上的臺燈的平面示意圖,燈臂AO長為40cm,與水平面所形成的夾角∠OAM為75°.由光源O射出的邊緣光線OC,OB與水平面所形成的夾角∠OCA,∠OBA分別為90°和30°,求該臺燈照亮水平面的寬度BC(不考慮其他因素,結(jié)果精確到0.1cm.溫馨提示:sin75°≈0.97,cos75°≈0.26, ).

【答案】解:在直角三角形ACO中,sin75°= ≈0.97,
解得OC≈38.8,
在直角三角形BCO中,tan30°= = ,
解得BC≈67.3.
答:該臺燈照亮水平面的寬度BC大約是67.3cm
【解析】根據(jù)sin75°= = ,求出OC的長,根據(jù)tan30°= ,再求出BC的長,即可求解.此題主要考查了解直角三角形的應(yīng)用,熟練應(yīng)用銳角三角函數(shù)關(guān)系是解題關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),C(0,3)兩點,與x軸交于點B.

(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸x=﹣1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標(biāo);
(3)設(shè)點P為拋物線的對稱軸x=﹣1上的一個動點,求使△BPC為直角三角形的點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把函數(shù)y=x的圖象上各點的縱坐標(biāo)變?yōu)樵瓉淼?倍,橫坐標(biāo)不變,得到函數(shù)y=2x的圖象;也可以把函數(shù)y=x的圖象上各點的橫坐標(biāo)變?yōu)樵瓉淼? 倍,縱坐標(biāo)不變,得到函數(shù)y=2x的圖象.
類似地,我們可以認(rèn)識其他函數(shù).

(1) 把函數(shù)y= 的圖象上各點的縱坐標(biāo)變?yōu)樵瓉淼?/span>倍,橫坐標(biāo)不變,得到函數(shù)y= 的圖象;也可以把函數(shù)y= 的圖象上各點的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)不變,得到函數(shù)y= 的圖象.
(2)已知下列變化:①向下平移2個單位長度;②向右平移1個單位長度;③向右平移 個單位長度;④縱坐標(biāo)變?yōu)樵瓉淼?倍,橫坐標(biāo)不變;⑤橫坐標(biāo)變?yōu)樵瓉淼? 倍,縱坐標(biāo)不變;⑥橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變.
(Ⅰ)函數(shù)y=x2的圖象上所有的點經(jīng)過④→②→①,得到函數(shù)的圖象;
(Ⅱ)為了得到函數(shù)y=﹣ (x﹣1)2﹣2的圖象,可以把函數(shù)y=﹣x2的圖象上所有的點
A.①→⑤→③B.①→⑥→③C.①→②→⑥D(zhuǎn).①→③→⑥
(3)函數(shù)y= 的圖象可以經(jīng)過怎樣的變化得到函數(shù)y=﹣ 的圖象?(寫出一種即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)活動﹣旋轉(zhuǎn)變換

(1)如圖①,在△ABC中,∠ABC=130°,將△ABC繞點C逆時針旋轉(zhuǎn)50°得到△A′B′C,連接BB′,求∠A′B′B的大。
(2)如圖②,在△ABC中,∠ABC=150°,AB=3,BC=5,將△ABC繞點C逆時針旋轉(zhuǎn)60°得到△A′B′C,連接BB′,以A′為圓心,A′B′長為半徑作圓.
①猜想:直線BB′與⊙A′的位置關(guān)系,并證明你的結(jié)論;
②連接A′B,求線段A′B的長度;
(3)如圖③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,將△ABC繞點C逆時針旋轉(zhuǎn)2β角度(0°<2β<180°)得到△A′B′C,連接A′B和BB′,以A′為圓心,A′B′長為半徑作圓,問:角α與角β滿足什么條件時,直線BB′與⊙A′相切,請說明理由,并求此條件下線段A′B的長度(結(jié)果用角α或角β的三角函數(shù)及字母m、n所組成的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】測量計算是日常生活中常見的問題,如圖,建筑物BC的屋頂有一根旗桿AB,從地面上D點處觀測旗桿頂點A的仰角為50°,觀測旗桿底部B點的仰角為45°,(可用的參考數(shù)據(jù):sin50°≈0.8,tan50°≈1.2)

(1)若已知CD=20米,求建筑物BC的高度;
(2)若已知旗桿的高度AB=5米,求建筑物BC的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A,B是反比例函數(shù)y= (k>0,x>0)圖象上的兩點,BC∥x軸,交y軸于點C,動點P從坐標(biāo)原點O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運動,終點為C,過P作PM⊥x軸,垂足為M.設(shè)三角形OMP的面積為S,P點運動時間為t,則S關(guān)于x的函數(shù)圖象大致為(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的有( )
①面積之比為1:2的兩個相似三角形的周長之比是1:4;②三視圖相同的幾何體是正方形;③-27沒有立方根;④對角線互相垂直的四邊形是菱形;⑤某中學(xué)人數(shù)相等的甲、乙兩班學(xué)生參加了同一次數(shù)學(xué)測驗,班平均分和方差分別為 =82分, =82分, =245, =190,那么成績較為整齊的是乙班,
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了進一步開展“陽光體育”活動,計劃用2000元購買乒乓球拍,用2800元購買羽毛球拍.已知一副羽毛球拍比一副乒乓球拍貴14元.該校購買的乒乓球拍與羽毛球拍的數(shù)量能相同嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的對角線相交于點O,∠CAB的平分線分別交BD,BC于點E,F(xiàn),作BH⊥AF于點H,分別交AC,CD于點G,P,連接GE,GF.

(1)求證:△OAE≌△OBG;
(2)試問:四邊形BFGE是否為菱形?若是,請證明;若不是,請說明理由;
(3)試求: 的值(結(jié)果保留根號).

查看答案和解析>>

同步練習(xí)冊答案