分式方程
3
x
=
1
x-1
的解為
 
考點:解分式方程
專題:計算題
分析:分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.
解答:解:去分母得:3x-3=x,
解得:x=
3
2
,
經(jīng)檢驗是分式方程的解,
故答案為:x=
3
2
點評:此題考查了解分式方程,解分式方程的基本思想是“轉化思想”,把分式方程轉化為整式方程求解.解分式方程一定注意要驗根.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,一次函數(shù)x=2與反比例函數(shù)y=
2
x
和y=-
1
x
的圖象分別交于A、B兩點,若P是y軸上任意一點,求△PAB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知假命題“兩個銳角的和是直角”請舉出一個反例:
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知
3a-1
11
是同類二次根式,則a的值可以是
 
(寫兩個即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知代數(shù)式-3xm-1y3與5xnym+n是同類項,則m=
 
,n=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若a>b,c<0,用“>”或“<”填空:
(1)a+3
 
b+1;
(2)-a
 
-b;
(3)ac2
bc2;
(4)
a
c
 
b
c

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點A1是面積為3的等邊△ABC的兩條中線的交點,以BA1為一邊,構造等邊△BA1C1,稱為第一次構造;點A2是△BA1C1的兩條中線的交點,再以BA2為一邊,構造等邊△BA2C2,稱為第二次構造;以此類推,當?shù)趎次構造出的等邊△BnAnCn的邊BCn與等邊△CBA的邊AB第一次在同一直線上時,構造停止.則構造出的最后一個三角形的面積是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

一只袋中裝有3個紅球、6個黃球和9個白球,它們除顏色外都相同,從中任意摸出1個球,你認為摸出
 
球的可能性最大,摸出
 
球的可能性最小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點A在反比例函數(shù)y=
1
x
的圖象上,點B在反比例函數(shù)y=
3
x
的圖象上,且AB∥x軸,點C、D在x軸上,若四邊形ABCD為矩形,則它的面積為
 

查看答案和解析>>

同步練習冊答案