【題目】已知:如圖,△ABC和△DBE均為等腰直角三角形.
(1)求證:AD=CE;
(2)猜想:AD和CE是否垂直?若垂直,請(qǐng)說明理由;若不垂直,則只要寫出結(jié)論,不用寫理由.
【答案】
(1)解:∵△ABC和△DBE均為等腰直角三角形,
∴AB=BC,BD=BE,∠ABC=∠DBE=90°,
∴∠ABC﹣∠DBC=∠DBE﹣∠DBC,
即∠ABD=∠CBE,
∴△ABD≌△CBE,
∴AD=CE.
(2)解:垂直.延長(zhǎng)AD分別交BC和CE于G和F,
∵△ABD≌△CBE,
∴∠BAD=∠BCE,
∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,
又∵∠BGA=∠CGF,
∴∠AFC=∠ABC=90°,
∴AD⊥CE.
【解析】(1)要證AD=CE,只需證明△ABD≌△CBE,由于△ABC和△DBE均為等腰直角三角形,所以易證得結(jié)論.(2)延長(zhǎng)AD,根據(jù)(1)的結(jié)論,易證∠AFC=∠ABC=90°,所以AD⊥CE.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用等腰直角三角形的相關(guān)知識(shí)可以得到問題的答案,需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OM是∠AOC的平分線,ON是∠BOC的平分線.
(1)如圖1,當(dāng)∠AOB是直角,∠BOC=60°時(shí),∠MON的度數(shù)是多少?
(2)如圖2,當(dāng)∠AOB=α,∠BOC=60°時(shí),猜想∠MON與α的數(shù)量關(guān)系;
(3)如圖3,當(dāng)∠AOB=α,∠BOC=β時(shí),猜想∠MON與α、β有數(shù)量關(guān)系嗎?如果有,指出結(jié)論并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】化簡(jiǎn)求值:2(﹣3x2y+xy)﹣[2xy﹣4(xy﹣ x2y)+x2y],其中x、y滿足|x﹣3|+(y+ )2=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)正數(shù)的兩個(gè)平方根分別為3a﹣1和﹣5﹣a,則這個(gè)正數(shù)的立方根是( 。
A. ﹣2 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段AB=10cm,點(diǎn)C是直線AB上一點(diǎn),BC=4cm,若M是AC的中點(diǎn), N是BC的中點(diǎn),則線段MN的長(zhǎng)度是:( )
A.7cm
B.5cm或3cm
C.7cm或3cm
D.5cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=mx與雙曲線y=相交于A、B兩點(diǎn),A點(diǎn)的坐標(biāo)為(1,2),AC⊥x軸于C,連結(jié)BC.
(1)求反比例函數(shù)的表達(dá)式;
(2)根據(jù)圖象直接寫出當(dāng)mx>時(shí),x的取值范圍;
(3)在平面內(nèi)是否存在一點(diǎn)D,使四邊形ABDC為平行四邊形?若存在,請(qǐng)求出點(diǎn)D坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OA、OB分別是線段MC、MD的垂直平分線,MD=5cm,MC=7cm,CD=10cm,一只小螞蟻從點(diǎn)M出發(fā)爬到OA邊上任意一點(diǎn)E,再爬到OB邊上任意一點(diǎn)F,然后爬回M點(diǎn)處,則小螞蟻爬行的路徑最短可為( )
A.12cm
B.10cm
C.7cm
D.5cm
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com