(2009•廣安)已知:如圖,AB是⊙O的直徑,AD是弦,OC垂直AD于F交⊙O于E,連接DE、BE,且∠C=∠BED.
(1)求證:AC是⊙O的切線;
(2)若OA=10,AD=16,求AC的長(zhǎng).

【答案】分析:(1)要證AC是⊙O的切線,只要證明OA⊥AC就可以;
(2)根據(jù)△OAF∽△OCA,相似三角形的對(duì)應(yīng)邊的比相等,就可以求出AC的長(zhǎng).
解答:(1)證明:∵∠BED=∠BAD,∠C=∠BED,
∴∠BAD=∠C.(1分)
∵OC⊥AD于點(diǎn)F,
∴∠BAD+∠AOC=90°.(2分)
∴∠C+∠AOC=90°.
∴∠OAC=90°.
∴OA⊥AC.
∴AC是⊙O的切線.(4分)

(2)解:∵OC⊥AD于點(diǎn)F,
∴AF=AD=8.(5分)
在Rt△OAF中,OF==6,(6分)
∵∠AOF=∠AOC,∠OAF=∠C,
∴△OAF∽△OCA.(7分)

即OC=.(8分)
在Rt△OAC中,AC=.(10分)
點(diǎn)評(píng):本題主要考查了切線的證明方法,以及垂徑定理,三角形相似的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2009•廣安)已知:拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.其中點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)C在y軸的負(fù)半軸上,線段OA、OC的長(zhǎng)(OA<OC)是方程x2-5x+4=0的兩個(gè)根,且拋物線的對(duì)稱軸是直線x=1.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)求此拋物線的解析式;
(3)若點(diǎn)D是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、B不重合),過點(diǎn)D作DE∥BC交AC于點(diǎn)E,連接CD,設(shè)BD的長(zhǎng)為m,△CDE的面積為S,求S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍.S是否存在最大值?若存在,求出最大值并求此時(shí)D點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中考數(shù)學(xué)考前30天沖刺得分專練8:二次函數(shù)(解析版) 題型:解答題

(2009•廣安)已知:拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.其中點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)C在y軸的負(fù)半軸上,線段OA、OC的長(zhǎng)(OA<OC)是方程x2-5x+4=0的兩個(gè)根,且拋物線的對(duì)稱軸是直線x=1.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)求此拋物線的解析式;
(3)若點(diǎn)D是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、B不重合),過點(diǎn)D作DE∥BC交AC于點(diǎn)E,連接CD,設(shè)BD的長(zhǎng)為m,△CDE的面積為S,求S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍.S是否存在最大值?若存在,求出最大值并求此時(shí)D點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省某市新人教版中考數(shù)學(xué)模擬試卷(11)(解析版) 題型:解答題

(2009•廣安)已知:拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.其中點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)C在y軸的負(fù)半軸上,線段OA、OC的長(zhǎng)(OA<OC)是方程x2-5x+4=0的兩個(gè)根,且拋物線的對(duì)稱軸是直線x=1.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)求此拋物線的解析式;
(3)若點(diǎn)D是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、B不重合),過點(diǎn)D作DE∥BC交AC于點(diǎn)E,連接CD,設(shè)BD的長(zhǎng)為m,△CDE的面積為S,求S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍.S是否存在最大值?若存在,求出最大值并求此時(shí)D點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣東省汕尾市陸豐市玉燕中學(xué)九年級(jí)(下)月考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•廣安)已知:拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.其中點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)C在y軸的負(fù)半軸上,線段OA、OC的長(zhǎng)(OA<OC)是方程x2-5x+4=0的兩個(gè)根,且拋物線的對(duì)稱軸是直線x=1.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)求此拋物線的解析式;
(3)若點(diǎn)D是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、B不重合),過點(diǎn)D作DE∥BC交AC于點(diǎn)E,連接CD,設(shè)BD的長(zhǎng)為m,△CDE的面積為S,求S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍.S是否存在最大值?若存在,求出最大值并求此時(shí)D點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣東省河源市中考數(shù)學(xué)模擬試卷(三)(解析版) 題型:解答題

(2009•廣安)已知:拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.其中點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)C在y軸的負(fù)半軸上,線段OA、OC的長(zhǎng)(OA<OC)是方程x2-5x+4=0的兩個(gè)根,且拋物線的對(duì)稱軸是直線x=1.
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)求此拋物線的解析式;
(3)若點(diǎn)D是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、B不重合),過點(diǎn)D作DE∥BC交AC于點(diǎn)E,連接CD,設(shè)BD的長(zhǎng)為m,△CDE的面積為S,求S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍.S是否存在最大值?若存在,求出最大值并求此時(shí)D點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案