【題目】如圖,在平面直角坐標(biāo)系中,ABCD的頂點(diǎn)B,C在x軸上,A,D兩點(diǎn)分別在反比例函數(shù)y=﹣ (x<0)與y= (x>0)的圖象上,則ABCD的面積為

【答案】4
【解析】解:連接OA、OD,如圖, ∵四邊形ABCD為平行四邊形,
∴AD垂直y軸,
∴SOAE= ×|﹣3|= ,SODE= ×|1|= ,
∴SOAD=2,
ABCD的面積=2SOAD=4.
所以答案是4.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解比例系數(shù)k的幾何意義的相關(guān)知識(shí),掌握幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積,以及對(duì)平行四邊形的性質(zhì)的理解,了解平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的盒子里裝有40個(gè)黑、白兩種顏色的球,這些球除顏色外完全相同.小麗做摸球?qū)嶒?yàn),攪勻后她從盒子里摸出一個(gè)球記下顏色后,再把球放回盒子中,不斷重復(fù)上述過(guò)程,表是實(shí)驗(yàn)中的一組統(tǒng)計(jì)數(shù)據(jù):

摸球的次數(shù)n

100

200

300

500

800

1000

3000

摸到白球的次數(shù)m

65

124

178

302

481

599

1803

摸到白球的頻率

0.65

0.62

0.593

0.604

0.601

0.599

0.601

若從盒子里隨機(jī)摸出一個(gè)球,則摸到白球的概率的估計(jì)值為 . (精確到0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,AB=6cm,BC=8cm,若將矩形對(duì)角線BD對(duì)折,使B點(diǎn)與D點(diǎn)重合,四邊形EBFD是菱形嗎?請(qǐng)說(shuō)明理由,并求這個(gè)菱形的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,AB=4cm,∠ADC=120°,點(diǎn)E,F(xiàn)同時(shí)由A,C兩點(diǎn)出發(fā),分別沿AB,CB方向向點(diǎn)B勻速移動(dòng)(到點(diǎn)B為止),點(diǎn)E的速度為1cm/s,點(diǎn)F的速度為2cm/s,經(jīng)過(guò)t秒△DEF為等邊三角形,則t的值為(
A.1
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是根據(jù)某市2010年至2014年工業(yè)生產(chǎn)總值繪制的折線統(tǒng)計(jì)圖,觀察統(tǒng)計(jì)圖獲得以下信息,其中信息判斷錯(cuò)誤的是(

A.2010年至2014年間工業(yè)生產(chǎn)總值逐年增加

B.2014年的工業(yè)生產(chǎn)總值比前一年增加了40億元

C.2012年與2013年每一年與前一年比,其增長(zhǎng)額相同

D.從2011年至2014年,每一年與前一年比,2014年的增長(zhǎng)率最大

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(2,1)和點(diǎn)B(0,2).

(1)求出函數(shù)的關(guān)系式;

(2)在平面置角坐標(biāo)系內(nèi)畫一次函數(shù)的圖象,回答下列問(wèn)題:

①y的值隨著x的值的增大而   ,它的圖象與x軸的交點(diǎn)坐標(biāo)是   

下列點(diǎn)在一次函數(shù)圖象上的是   

(1,),(﹣2,3),(6,﹣5)

當(dāng)x   ,時(shí),y>0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),直線y=kx+b交x軸于A(﹣3,0),交y軸于B,且三角形AOB的面積為6,則k=(  )

A. B. C. ﹣4或4 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一家商店進(jìn)行裝修,若請(qǐng)甲、乙兩個(gè)裝修組同時(shí)施工,8天可以完成,需付給兩組費(fèi)用共3520元;若先請(qǐng)甲組單獨(dú)做6天,再請(qǐng)乙組單獨(dú)做12天可以完成,需付給兩組費(fèi)用共3480元,問(wèn):

(1)甲、乙兩組單獨(dú)工作一天,商店應(yīng)各付多少元?

(2)已知甲組單獨(dú)完成需要12天,乙組單獨(dú)完成需要24天,單獨(dú)請(qǐng)哪組,商店應(yīng)付費(fèi)用較少?

(3)若裝修完后,商店每天可盈利200元,你認(rèn)為如何安排施工有利用商店經(jīng)營(yíng)?說(shuō)說(shuō)你的理由.(可以直接用(1)(2)中的已知條件)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABCD中,O為對(duì)角線BD的中點(diǎn),過(guò)點(diǎn)O的直線EF分別交AD,BC于E,F(xiàn)兩點(diǎn),連結(jié)BE,DF.
(1)求證:△DOE≌△BOF;
(2)當(dāng)∠DOE等于多少度時(shí),四邊形BFDE為菱形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案