【題目】如圖,已知拋物線與軸交于、兩點(diǎn),,交軸于點(diǎn),對(duì)稱軸是直線.
(1)求拋物線的解析式及點(diǎn)的坐標(biāo);
(2)連接,是線段上一點(diǎn),關(guān)于直線的對(duì)稱點(diǎn)正好落在上,求點(diǎn)的坐標(biāo);
(3)動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)運(yùn)動(dòng),過(guò)作軸的垂線交拋物線于點(diǎn),交線段于點(diǎn).設(shè)運(yùn)動(dòng)時(shí)間為()秒.若與相似,請(qǐng)求出的值.
【答案】(1),點(diǎn)坐標(biāo)為;(2)F;(3)
【解析】
(1)先求出點(diǎn)A,B的坐標(biāo),將A、B的坐標(biāo)代入中,即可求解;
(2)確定直線BC的解析式為y=x+3,根據(jù)點(diǎn)E、F關(guān)于直線x=1對(duì)稱,即可求解;
(3) 若與相似,則或,即可求解;
解:(1)∵點(diǎn)、關(guān)于直線對(duì)稱,,∴,.
代入中,得:,解,
∴拋物線的解析式為.
∴點(diǎn)坐標(biāo)為;
(2)設(shè)直線的解析式為,則有:,解得,
∴直線的解析式為.
∵點(diǎn)、關(guān)于直線對(duì)稱,
又到對(duì)稱軸的距離為1,∴.
∴點(diǎn)的橫坐標(biāo)為2,將代入中,得:,
∴F(2,1);
(3)秒時(shí),.如圖
當(dāng)時(shí)
∴,∴,
.
①若,則,即
(舍去),或.
②若,則,即
(舍去),或(舍去)
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線和拋物線(為正整數(shù)).
(1)拋物線與軸的交點(diǎn)______,頂點(diǎn)坐標(biāo)______;
(2)當(dāng)時(shí),請(qǐng)解答下列問(wèn)題.
①直接寫(xiě)出與軸的交點(diǎn)______,頂點(diǎn)坐標(biāo)______,請(qǐng)寫(xiě)出拋物線,的一條相同的圖象性質(zhì)______;
②當(dāng)直線與,相交共有4個(gè)交點(diǎn)時(shí),求的取值范圍.
(3)若直線()與拋物線,拋物線(為正整數(shù))共有4個(gè)交點(diǎn),從左至右依次標(biāo)記為點(diǎn),點(diǎn),點(diǎn),點(diǎn),當(dāng)時(shí),求出,之間滿足的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E,F分別在矩形ABCD的邊AB,BC上,連接EF,將△BEF沿直線EF翻折得到△HEF,AB=8,BC=6,AE:EB=3:1.
(1)如圖1,當(dāng)∠BEF=45°時(shí),EH的延長(zhǎng)線交DC于點(diǎn)M,求HM的長(zhǎng);
(2)如圖2,當(dāng)FH的延長(zhǎng)線經(jīng)過(guò)點(diǎn)D時(shí),求tan∠FEH的值;
(3)如圖3,連接AH,HC,當(dāng)點(diǎn)F在線段BC上運(yùn)動(dòng)時(shí),試探究四邊形AHCD的面積是否存在最小值?若存在,求出四邊形AHCD的面積的最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】孫老師在上《等可能事件的概率》這節(jié)課時(shí),給同學(xué)們提出了一個(gè)問(wèn)題:“如果同時(shí)隨機(jī)投擲兩枚質(zhì)地均勻的骰子,它們朝上一面的點(diǎn)數(shù)和是多少的可能性最大?”同學(xué)們展開(kāi)討論,各抒己見(jiàn),其中小芳和小超兩位同學(xué)給出了兩種不同的回答.小芳認(rèn)為6的可能性最大,小超認(rèn)為7的可能性最大.你認(rèn)為他們倆的回答正確嗎?請(qǐng)用列表或畫(huà)樹(shù)狀圖等方法加以說(shuō)明.(骰子:六個(gè)面上分別刻有1,2,3,4,5,6個(gè)小圓點(diǎn)的小正方體.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某童裝專(zhuān)賣(mài)店在銷(xiāo)售中發(fā)現(xiàn),一款童裝每件進(jìn)價(jià)為40元,若銷(xiāo)售價(jià)為60元,每天可售出20件,為迎接“雙十一”,專(zhuān)賣(mài)店決定采取適當(dāng)?shù)慕祪r(jià)措施,以擴(kuò)大銷(xiāo)售量,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),如果每件童裝降價(jià)1元,那么平均可多售出2件設(shè)每件童裝降價(jià)x元時(shí),平均每天可盈利y元.
寫(xiě)出y與x的函數(shù)關(guān)系式;
當(dāng)該專(zhuān)賣(mài)店每件童裝降價(jià)多少元時(shí),平均每天盈利400元?
該專(zhuān)賣(mài)店要想平均每天盈利600元,可能嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于D,下列條件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC;(3);(4)AB2=BDBC.其中一定能夠判定△ABC是直角三角形的有(填序號(hào))_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=4.點(diǎn)G,E分別在邊AB,CD上,點(diǎn)F,H在對(duì)角線AC上.若四邊形EFGH是菱形,則AG的長(zhǎng)是( )
A.B.5C.D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,將拋物線y=ax2(a<0)平移到頂點(diǎn)M恰好落在直線y=x+3上,且拋物線過(guò)直線與y軸的交點(diǎn)A,設(shè)此時(shí)拋物線頂點(diǎn)的橫坐標(biāo)為m(m>0).
(1)用含m的代數(shù)式表示a;
(2)如圖2,Rt△CBT與拋物線交于C、D、T三點(diǎn),∠B=90,BC∥x軸,CD=2,BD=t,BT=2t,△TDC的面積為4
①求拋物線方程;
②如圖3,P為拋物線AM段上任一點(diǎn),Q(0,4),連結(jié)QP并延長(zhǎng)交線段AM于N,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年5月9日,美國(guó)政府宣布自2019年5月10日起,對(duì)中國(guó)進(jìn)口的億美元清單商品加征的關(guān)稅稅率由提高到.為了解我校師生對(duì)此事的關(guān)注度,學(xué)生張明采取隨機(jī)抽樣的方法進(jìn)行問(wèn)卷調(diào)查,繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問(wèn)題: 我校師生對(duì)“加征關(guān)稅稅率”了解情況條形統(tǒng)計(jì)圍我校師生對(duì)“加征關(guān)稅稅率”了解情況扇形統(tǒng)計(jì)圍
本次調(diào)查的人數(shù)有 人, 在扇形統(tǒng)計(jì)圖中,的值是 ;請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
在被調(diào)查的教師中,有男女共名教師愿意接受深入調(diào)查,現(xiàn)要從這名教師中隨機(jī)抽取名教
師進(jìn)行深入調(diào)查,請(qǐng)畫(huà)樹(shù)狀圖或者列表求出所抽取的名教師恰好是名男教師和名女教師的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com