【題目】如圖,矩形ABCD中,AB=8,BC=4.點G,E分別在邊AB,CD上,點F,H在對角線AC上.若四邊形EFGH是菱形,則AG的長是(

A.B.5C.D.6

【答案】B

【解析】

連接GE,交AC于點O,根據(jù)矩形的性質可得DCAB,∠DAB=B=90°,然后根據(jù)勾股定理求出AC,再根據(jù)菱形的性質可得EO=GO,∠EOC=GOA=90°,然后利用AAS證出△COE≌△AOG,從而求出AO,再證出△AOG∽△ABC,列出比例式即可求出結論.

解:連接GE,交AC于點O

∵四邊形ABCD為矩形,AB=8,BC=4

DCAB,∠DAB=B=90°

∴∠ECO=GAO,AC=

∵四邊形EFGH是菱形,

EO=GO,∠EOC=GOA=90°

在△COE和△AOG

∴△COE≌△AOG

CO=AO==

∵∠OAG=BAC,∠AOG=ABC=90°

∴△AOG∽△ABC

解得:AG=5

故選B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】“機動車行駛到斑馬線要禮讓行人”等交通法規(guī)實施后,某校共有3000人,數(shù)學課外實踐小組就對這些交通法規(guī)的了解情況在全校隨機調(diào)查了部分學生,調(diào)查結果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實踐小組把此次調(diào)查結果整理并繪制成下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.

請結合圖中所給的信息解答下列問題:

1)扇形統(tǒng)計圖中C所對應的扇形圓心角度數(shù)為   ;估計全校非常了解交通法規(guī)的有   人.

2)補全條形統(tǒng)計圖;

3)學校準備從組內(nèi)的甲、乙、丙、丁四位學生中隨機抽取兩名學生參加市區(qū)交通法規(guī)競賽,請用列表或畫樹狀圖的方法求丙和丁兩名同學同事被選中的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 在三邊互不相等的ABC中, DE,F分別是ABAC,BC邊的中點.連接DE,過點CCMABDE的延長線于點M,連接CD、EF交于點N,則圖中全等三角形共有(

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線軸交于、兩點,,交軸于點,對稱軸是直線

1)求拋物線的解析式及點的坐標;

2)連接,是線段上一點,關于直線的對稱點正好落在上,求點的坐標;

3)動點從點出發(fā),以每秒2個單位長度的速度向點運動,過軸的垂線交拋物線于點,交線段于點.設運動時間為)秒.若相似,請求出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,半徑OA與弦BD垂直,點C在⊙O上,∠AOB80°

(1) 若點C在優(yōu)弧BD上,求∠ACD的大小

(2) 若點C在劣弧BD上,直接寫出∠ACD的大小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果店以10/千克的價格購進某種水果進行銷售,經(jīng)過市場調(diào)查獲得部分數(shù)據(jù)如下表:

銷售價格x(元/千克)

10

13

16

19

22

日銷售量y(千克)

100

85

70

55

40

1)請根據(jù)表中的數(shù)據(jù),用所學過的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識刻畫yx之間的函數(shù)關系;

2)該水果店應該如何確定這批水果的銷售價格,才能使日銷售利潤最大?

3)若該水果店平均每銷售1千克這種水果會損耗a千克,當20≤x≤22時,水果店日獲利的最大值為405元,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB>CD,AD=AB+CD.

(1)利用尺規(guī)作ADC的平分線DE,交BC于點E,在AD上截取AF=AB,連接AE,EF(保留作圖痕跡,不寫作法);

(2)(1)的條件下,證明:EC=EF;AEDE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校組織大手拉小手,義賣獻愛心活動,計劃購買黑白兩種顏色的文化衫進行手繪設計后出售,并將所獲利潤全部捐給山區(qū)困難孩子.已知該學校從批發(fā)市場花4800元購買了 黑白兩種顏色的文化衫200件,每件文化衫的批發(fā)價及手繪后的零售價如表:

批發(fā)價()

零售價()

文化衫

25

45

20

35

(1)學校購進黑.白文化衫各幾件?

(2)通過手繪設計后全部售出,求該校這次義賣活動所獲利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,的中點。在射線上任意取一點,連接,將線段繞點逆時針方向旋轉80°,點的對應點是點,連接.

1)如圖1,當點落在射線上時,

_________________°;

②直線與直線的位置關系是______________________。

2)如圖2,當點落在射線的左側時,試判斷直線與直線的位置關系,并證明你的結論。

查看答案和解析>>

同步練習冊答案