【題目】如圖,在等腰RtABC 中,∠BAC=90°,在BC上截取BD=BA,作∠ABC的平分線與AD相交于點(diǎn)P,連接PC,若ABC的面積為8cm2,則BPC的面積為(

A. 4cm2 B. 5cm2 C. 6cm2 D. 7cm2

【答案】A

【解析】

根據(jù)等腰三角形三線合一的性質(zhì)可得AP=PD,然后根據(jù)等底等高的三角形面積相等求出△BPC的面積等于△ABC面積的一半,代入數(shù)據(jù)計(jì)算即可得解.

∵BD=BA,BP是∠ABC的平分線,

∴AP=PD,

∴S△BPD=S△ABD,S△CPD=S△ACD,

∴S△BPC=S△BPD+S△CPD=S△ABD+S△ACD=S△ABC

∵△ABC的面積為8cm2,

∴S△BPC=×8=4cm2,

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABE≌△ADC≌△ABC,若∠1∶∠2∶∠3=2853,則∠α的度數(shù)為(

A. 80° B. 100° C. 60° D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:

平面直角坐標(biāo)系中,矩形紙片OBCD按如圖的方式放置已知,將這張紙片沿過點(diǎn)B的直

線折疊,使點(diǎn)O落在邊CD上,記作點(diǎn)A,折痕與邊OD交于點(diǎn)E

數(shù)學(xué)探究:

點(diǎn)C的坐標(biāo)為______;

求點(diǎn)E的坐標(biāo)及直線BE的函數(shù)關(guān)系式;

若點(diǎn)Px軸上的一點(diǎn),直線BE上是否存在點(diǎn)Q,能使以A,BP,Q為頂點(diǎn)的四邊形是平行四邊形?

若存在,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線分別與x軸、y軸交于點(diǎn)B、C,且與直線交于點(diǎn)A

分別求出點(diǎn)AB、C的坐標(biāo);

直接寫出關(guān)于x的不等式的解集;

D是線段OA上的點(diǎn),且的面積為12,求直線CD的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,,,,動(dòng)點(diǎn)P從點(diǎn)A開始沿邊AC向點(diǎn)C以每秒1個(gè)單位長度的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C開始沿邊CB向點(diǎn)B以每秒2個(gè)單位長度的速度運(yùn)動(dòng),過點(diǎn)P,交AB于點(diǎn)D,連接PQ,點(diǎn)P、Q分別從點(diǎn)AC同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t

直接用含t的代數(shù)式分別表示:______,______;

是否存在t的值,使四邊形PDBQ為平行四邊形?若存在,求出t的值;若不存在,說明理由.

如圖2,在整個(gè)運(yùn)動(dòng)過程中,求出線段PQ中點(diǎn)M所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠O=30°,點(diǎn)BOM邊上的一個(gè)點(diǎn)光源,在邊ON上放一平面鏡.光線BC經(jīng)

過平面鏡反射后,反射光線與邊OM的交點(diǎn)記為E,則△OCE是等腰三角形的個(gè)數(shù)有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 3個(gè)以上

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】公安人員在破案時(shí)常常根據(jù)案發(fā)現(xiàn)場作案人員留下的腳印推斷犯人的身高,如果用a表示腳印長度,b表示身高,關(guān)系類似滿足于:

(1)某人腳印長度為24.5cm,則他的身高約為多少?(精確到1cm)

(2)在某次案件中,抓獲了兩可疑人員,甲的身高為1.83m,乙的身高為1.89m,在現(xiàn)場測量的腳印為26.3cm,請你幫助偵察一下。哪個(gè)可疑人員的可能性更大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了經(jīng)濟(jì)發(fā)展的需要,某市2014年投入科研經(jīng)費(fèi)500萬元,2016年投入科研經(jīng)費(fèi)720萬元.
(1)求2014至2016年該市投入科研經(jīng)費(fèi)的年平均增長率;
(2)根據(jù)目前經(jīng)濟(jì)發(fā)展的實(shí)際情況,該市計(jì)劃2017年投入的科研經(jīng)費(fèi)比2016年有所增加,但年增長率不超過15%,假定該市計(jì)劃2017年投入的科研經(jīng)費(fèi)為a萬元,請求出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD中,∠A=140°,D=80°.

(1)如圖1,若∠B=C,試求出∠C的度數(shù);

(2)如圖2,若∠ABC的角平分線BEDC于點(diǎn)E,且BEAD,試求出∠C的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案