【題目】今年是脫貧攻堅(jiān)決勝之年,我市某鄉(xiāng)為了增加農(nóng)民收入,決定利用當(dāng)?shù)貎?yōu)質(zhì)山林土地資源發(fā)展園林綠化樹苗培育產(chǎn)業(yè).前期由鄉(xiāng)農(nóng)技站引進(jìn)銀杏羅漢松、廣玉蘭、竹柏四個(gè)品種共棵幼苗進(jìn)行試育成苗實(shí)驗(yàn),并把實(shí)驗(yàn)數(shù)據(jù)繪制成下圖所示的扇形統(tǒng)計(jì)圖和不完整的條形統(tǒng)計(jì)圖,已知實(shí)驗(yàn)中竹柏的成苗率是

1)請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖;

2)如果從這棵實(shí)驗(yàn)幼苗中隨機(jī)抽取一棵幼苗,求它能成苗的概率;

3)根據(jù)市場(chǎng)調(diào)查,這四個(gè)品種的樹苗的幼苗進(jìn)價(jià)、成苗售價(jià)和市場(chǎng)需求如下表所示:

樹苗品種

銀杏

羅漢松

廣玉蘭

竹柏

每棵幼苗進(jìn)價(jià)(元)

每棵成苗售價(jià)(元)

市場(chǎng)需求(萬棵)

假設(shè)除了購買幼苗外,培育每棵成苗還需肥料等支出元(未成功培育成成苗的此項(xiàng)支出忽略不計(jì)),該鄉(xiāng)根據(jù)市場(chǎng)需求組織村農(nóng)民培育銀杏樹苗和羅漢松樹苗并將全部成苗銷售完成后,可為本鄉(xiāng)村農(nóng)民增加收入多少萬元?

【答案】1)補(bǔ)全條形圖見解析;(20.8;(3)可為農(nóng)民增加收入733萬元

【解析】

1)實(shí)驗(yàn)中竹柏的成苗數(shù)=幼苗的總棵數(shù)×0.25×成苗率,依此求出竹柏的成苗數(shù),再補(bǔ)全條形統(tǒng)計(jì)圖;

2)根據(jù)概率公式求解可得;

3)先分別求得該鄉(xiāng)A村培育銀杏樹苗和羅漢松樹苗并將全部成苗銷售完成后的總銷售收入,以及該鄉(xiāng)A村培育銀杏樹苗和羅漢松樹苗的總成本,相減即可求解.

解:(1)竹柏成苗棵數(shù)是:300×0.25×0.8=60,補(bǔ)全條形圖如圖;

四個(gè)品種的幼苗成苗數(shù)條形圖

2

所以,隨機(jī)抽取一棵幼苗,它能成苗的概率是

3)該鄉(xiāng)村培育銀杏樹苗和羅漢松樹苗并將全部成苗銷售完成后,總銷售收入萬元

則:(萬元)

該鄉(xiāng)村培育這兩種樹苗的總成本萬元,則:

(萬元)

(萬元)

該鄉(xiāng)培育這些樹苗并將全部成苗銷售完成后,可為農(nóng)民增加收入733萬元

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面立角坐標(biāo)系中,反比例函數(shù)yk≠0,x0)與一次函數(shù)yax+b的圖象交于點(diǎn)A(3,1)B(m,3).點(diǎn)C的坐標(biāo)為(10),連接AC,BC

1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;

2)當(dāng)x0時(shí),直接寫出不等式≥ax+b的解集   

3)若點(diǎn)My軸的正半軸上的動(dòng)點(diǎn),當(dāng)ACM是直角三角形時(shí),直接寫出點(diǎn)M的坐標(biāo)   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖像與x軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C.

(1)求線段BC的長(zhǎng);

(2)當(dāng)0≤y≤3時(shí),請(qǐng)直接寫出x的范圍;

(3)點(diǎn)P是拋物線上位于第一象限的一個(gè)動(dòng)點(diǎn),連接CP,當(dāng)∠BCP90o時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過原點(diǎn)和點(diǎn),頂點(diǎn)為,拋物線與拋物線關(guān)于原點(diǎn)對(duì)稱.

1)求拋物線的函數(shù)表達(dá)式及點(diǎn)的坐標(biāo);

2)已知點(diǎn)在拋物線上的對(duì)應(yīng)點(diǎn)分別為、的對(duì)稱軸交軸于點(diǎn),則拋物線的對(duì)稱軸上是否存在點(diǎn),使得以、、為頂點(diǎn)的三角形與相似?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知中,,(如圖).以線段為邊向外作等邊三角形,點(diǎn)是線段的中點(diǎn),連接并延長(zhǎng)交線段于點(diǎn)

1)求證:四邊形為平行四邊形;

2)連接,交于點(diǎn)

①若,求的長(zhǎng);

②作,垂足為,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,邊上的一個(gè)動(dòng)點(diǎn),連接,過點(diǎn),連接,當(dāng)為等腰三角形時(shí),則的長(zhǎng)是_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:兩個(gè)相似等腰三角形,如果它們的底角有一個(gè)公共的頂點(diǎn),那么把這兩個(gè)三角形稱為關(guān)聯(lián)等腰三角形.如圖,在中, ,且所以稱關(guān)聯(lián)等腰三角形,設(shè)它們的頂角為,連接,則稱會(huì)為關(guān)聯(lián)比"

下面是小穎探究關(guān)聯(lián)比α之間的關(guān)系的思維過程,請(qǐng)閱讀后,解答下列問題:

[特例感知]

當(dāng)關(guān)聯(lián)等腰三角形,且時(shí),

①在圖1中,若點(diǎn)落在上,則關(guān)聯(lián)比=

②在圖2中,探究的關(guān)系,并求出關(guān)聯(lián)比的值.

[類比探究]

如圖3,

①當(dāng)關(guān)聯(lián)等腰三角形,且時(shí),關(guān)聯(lián)比=

②猜想:當(dāng)關(guān)聯(lián)等腰三角形,且時(shí),關(guān)聯(lián)比= (直接寫出結(jié)果,用含的式子表示)

[遷移運(yùn)用]

如圖4, 關(guān)聯(lián)等腰三角形.若點(diǎn)邊上一點(diǎn),且,點(diǎn)上一動(dòng)點(diǎn),求點(diǎn)自點(diǎn)運(yùn)動(dòng)至點(diǎn)時(shí),點(diǎn)所經(jīng)過的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,點(diǎn)從點(diǎn)出發(fā)以的速度沿折線運(yùn)動(dòng),點(diǎn)從點(diǎn)出發(fā)以的速度沿運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),當(dāng)某一點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng)設(shè)運(yùn)動(dòng)時(shí)間為的面積為關(guān)于的函數(shù)圖像由兩段組成,如圖2所示.

1)求的值;

2)求圖2中圖像段的函數(shù)表達(dá)式;

3)當(dāng)點(diǎn)運(yùn)動(dòng)到線段上某一段時(shí),的面積大于當(dāng)點(diǎn)在線段上任意一點(diǎn)時(shí)的面積,求的取值范圍.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年24月某市出現(xiàn)了200名新冠肺炎患者,市委根據(jù)黨中央的決定,對(duì)患者進(jìn)行了免費(fèi)治療.圖1是該市輕癥、重癥、危重癥三類患者的人數(shù)分布統(tǒng)計(jì)圖(不完整),圖2是這三類患者的人均治療費(fèi)用統(tǒng)計(jì)圖.請(qǐng)回答下列問題.

1)輕癥患者的人數(shù)是多少?

2)該市為治療危重癥患者共花費(fèi)多少萬元?

3)所有患者的平均治療費(fèi)用是多少萬元?

4)由于部分輕癥患者康復(fù)出院,為減少病房擁擠,擬對(duì)某病房中的AB、C、D、E五位患者任選兩位轉(zhuǎn)入另一病房,請(qǐng)用樹狀圖法或列表法求出恰好選中B、D兩位患者的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案