【題目】如圖,已知二次函數(shù)的圖像與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C.
(1)求線段BC的長(zhǎng);
(2)當(dāng)0≤y≤3時(shí),請(qǐng)直接寫出x的范圍;
(3)點(diǎn)P是拋物線上位于第一象限的一個(gè)動(dòng)點(diǎn),連接CP,當(dāng)∠BCP=90o時(shí),求點(diǎn)P的坐標(biāo).
【答案】(1)5 ;(2),;(3)點(diǎn)P坐標(biāo)為(,).
【解析】
(1)分別求出點(diǎn)B和點(diǎn)C的坐標(biāo),再運(yùn)用勾股定理即可求出BC的長(zhǎng);
(2)求出y=0和y=3時(shí)相應(yīng)的x的值,結(jié)合函數(shù)的圖象即可得到答案;
(3)過點(diǎn)P作PD⊥y軸,設(shè)點(diǎn)P坐標(biāo)為(x, ),則點(diǎn)D坐標(biāo)為(0, ),表示出PD,CD,證明△PDC∽△COB,得出,列方程求解即可.
(1)當(dāng)x=0時(shí),y=3,
∴C(0,3),
∴OC=3
當(dāng)y=0時(shí),解得x1=-1,x2=4
∴A(-1,0),B(4,0),
∴OA=1,OB=4
在Rt△BOC中,BC==5;
(2) 當(dāng)y=0時(shí),解得x1=-1,x2=4
當(dāng)y=3時(shí),解得x1=0,x2=4
∴當(dāng)0≤y≤3時(shí),,
(3)過點(diǎn)P作PD⊥y軸
設(shè)點(diǎn)P坐標(biāo)為(x, ),則點(diǎn)D坐標(biāo)為(0, )
∴PD=x,CD=-3=
∵∠BCP=90°,
∴∠PCD+∠BCO=90°,
∵∠PCD+∠CPD=90°,
∴∠BCO=∠CPD
∵∠PDC=∠BOC=90°,
∴△PDC∽△COB
∴,
∴,
∴x=或x=0(舍去)
當(dāng)x=時(shí),y=
∴點(diǎn)P坐標(biāo)為(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將矩形繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到矩形,點(diǎn)的對(duì)應(yīng)點(diǎn)分別為
(1)當(dāng)點(diǎn)落在上時(shí)
①如圖1,若,求證:
②如圖2,交于點(diǎn).若,求證:;
(2)若,
①如圖3,當(dāng)過點(diǎn)C時(shí),則的長(zhǎng)=_____.
②當(dāng)時(shí),作,繞點(diǎn)轉(zhuǎn)動(dòng),當(dāng)直線經(jīng)過時(shí),直線交邊于,的值=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,正方形ABCD繞點(diǎn)A(0,6)旋轉(zhuǎn),當(dāng)點(diǎn)B落在x軸上時(shí),點(diǎn)C剛好落在反比例函數(shù)(k≠0,x>0)的圖像上.已知sin∠OAB=.
(1)求反比例函數(shù)的表達(dá)式;
(2)反比例函數(shù)的圖像是否經(jīng)過AD邊的中點(diǎn),并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①、圖②、圖③均是4×4的正方形網(wǎng)格,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),小正方形的邊長(zhǎng)為1,點(diǎn)、、、、、均在格點(diǎn)上,在圖①、圖②、圖③中,只用無刻度的直尺,在給定的網(wǎng)格中按要求畫圖,所畫圖形的頂點(diǎn)均在格點(diǎn)上,不要求長(zhǎng)寫出畫法.
(1)在圖①中以線段為邊畫一個(gè)直角△;
(2)在圖②中以線段為邊畫一個(gè)軸對(duì)稱△,使其面積為5;
(3)在圖③中以線段為邊畫一個(gè)軸對(duì)稱四邊形,使其面積為6.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為二次函數(shù)圖象,直線與拋物線交于兩點(diǎn),兩點(diǎn)橫坐標(biāo)分別為根據(jù)函數(shù)圖象信息有下列結(jié)論:
①;
②若對(duì)于的任意值都有,則;
③;
④;
⑤當(dāng)為定值時(shí)若變大,則線段變長(zhǎng)
其中,正確的結(jié)論有__________(寫出所有正確結(jié)論的番號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司到果園基地購(gòu)買某種水果慰問醫(yī)務(wù)工作者,果園基地向購(gòu)買超過以上(含)的客戶推出兩種購(gòu)買方式.方式甲:價(jià)格為元,由果園基地運(yùn)送到公司;方式乙:價(jià)格為元,由顧客自己租車運(yùn)回,從果園基地到公司的租車費(fèi)用為元.設(shè)該公司購(gòu)買水果的數(shù)量為().
(1)根據(jù)題意,填寫下表:
購(gòu)買水果的數(shù)量(kg) | … | |||
方式甲的總費(fèi)用(元) | … | |||
方式乙的總費(fèi)用(元) | … |
(2)設(shè)該公司按方式甲購(gòu)買水果的總費(fèi)用為元,按方式乙購(gòu)買水果的總費(fèi)用為元,分別求,關(guān)于的函數(shù)解析式;
(3)根據(jù)題意填空:
① 若按方式甲購(gòu)買水果的總費(fèi)用和按方式乙購(gòu)買水果的總費(fèi)用相同,則該公司購(gòu)買水果的數(shù)量為 ;
② 若該公司購(gòu)買水果的數(shù)量為,則按方式甲、方式乙中的方式 購(gòu)買水果的總費(fèi)用少;
③ 若該公司購(gòu)買水果的總費(fèi)用為元,則按方式甲、方式乙中的方式 購(gòu)買水果的數(shù)量多.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線與軸交于,兩點(diǎn),與軸交于點(diǎn),已知點(diǎn).
(1)若,求,滿足的關(guān)系式;
(2)直線與拋物線交于,兩點(diǎn),拋物線的對(duì)稱軸為直線,且.
①求拋物線的解析式(各項(xiàng)系數(shù)用含的式子表示);
②求線段長(zhǎng)度的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年是脫貧攻堅(jiān)決勝之年,我市某鄉(xiāng)為了增加農(nóng)民收入,決定利用當(dāng)?shù)貎?yōu)質(zhì)山林土地資源發(fā)展園林綠化樹苗培育產(chǎn)業(yè).前期由鄉(xiāng)農(nóng)技站引進(jìn)“銀杏”、“羅漢松”、“廣玉蘭”、“竹柏”四個(gè)品種共棵幼苗進(jìn)行試育成苗實(shí)驗(yàn),并把實(shí)驗(yàn)數(shù)據(jù)繪制成下圖所示的扇形統(tǒng)計(jì)圖和不完整的條形統(tǒng)計(jì)圖,已知實(shí)驗(yàn)中竹柏的成苗率是.
(1)請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖;
(2)如果從這棵實(shí)驗(yàn)幼苗中隨機(jī)抽取一棵幼苗,求它能成苗的概率;
(3)根據(jù)市場(chǎng)調(diào)查,這四個(gè)品種的樹苗的幼苗進(jìn)價(jià)、成苗售價(jià)和市場(chǎng)需求如下表所示:
樹苗品種 | 銀杏 | 羅漢松 | 廣玉蘭 | 竹柏 |
每棵幼苗進(jìn)價(jià)(元) | ||||
每棵成苗售價(jià)(元) | ||||
市場(chǎng)需求(萬棵) |
假設(shè)除了購(gòu)買幼苗外,培育每棵成苗還需肥料等支出元(未成功培育成成苗的此項(xiàng)支出忽略不計(jì)),該鄉(xiāng)根據(jù)市場(chǎng)需求組織村農(nóng)民培育銀杏樹苗和羅漢松樹苗并將全部成苗銷售完成后,可為本鄉(xiāng)村農(nóng)民增加收入多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】4月23日為世界閱讀日,為響應(yīng)黨中央“倡導(dǎo)全民閱讀,建設(shè)書香社會(huì)”的號(hào)召,某校團(tuán)委組織了一次全校學(xué)生參加的“讀書活動(dòng)”大賽,為了了解本次大賽的成績(jī),校團(tuán)委隨機(jī)抽取了部分學(xué)生的成績(jī)(成績(jī)取整數(shù),總分100分)作為樣本進(jìn)行統(tǒng)計(jì),繪制了如下不完整的頻數(shù)頻率分布表和頻數(shù)分布直方圖:
根據(jù)所給信息,解答下列問題
(1)抽取的樣本容量是 . . .
(2)補(bǔ)全頻數(shù)分布直方圖,這200名學(xué)生成績(jī)的中位數(shù)會(huì)落在 分?jǐn)?shù)段;
(3)全校有1200名學(xué)生參加比賽,若得分為90分及以上為優(yōu)秀,請(qǐng)你估計(jì)全校參加比賽成績(jī)優(yōu)秀的學(xué)生人數(shù)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com