【題目】如圖,在正方形ABCD中,邊長(zhǎng)為2的等邊三角形AEF的頂點(diǎn)E,F(xiàn)分別在BC和CD上,下列結(jié)論: ①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+ .
其中正確的序號(hào)是(把你認(rèn)為正確的都填上).
【答案】①②④
【解析】解:∵四邊形ABCD是正方形, ∴AB=AD,
∵△AEF是等邊三角形,
∴AE=AF,
在Rt△ABE和Rt△ADF中,
,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF,
∵BC=DC,
∴BC﹣BE=CD﹣DF,
∴CE=CF,
∴①說法正確;
∵CE=CF,
∴△ECF是等腰直角三角形,
∴∠CEF=45°,
∵∠AEF=60°,
∴∠AEB=75°,
∴②說法正確;
如圖,連接AC,交EF于G點(diǎn),
∴AC⊥EF,且AC平分EF,
∵∠CAF≠∠DAF,
∴DF≠FG,
∴BE+DF≠EF,
∴③說法錯(cuò)誤;
∵EF=2,
∴CE=CF= ,
設(shè)正方形的邊長(zhǎng)為a,
在Rt△ADF中,
AD2+DF2=AF2 , 即a2+(a﹣ )2=4,
解得a= ,
則a2=2+ ,
S正方形ABCD=2+ ,
④說法正確,
所以答案是:①②④.
【考點(diǎn)精析】關(guān)于本題考查的等邊三角形的性質(zhì)和正方形的性質(zhì),需要了解等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°;正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=kx﹣1,若y隨x的增大而增大,則它的圖象經(jīng)過( )
A.第一、二、三象限
B.第一、二、四象限
C.第一、三、四象限
D.第二、三、四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的一元二次方程(m-2)x2-4x-2=0有兩個(gè)實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是( )
A. m≥0B. m>0C. m≥0,m≠2D. m>0,m≠2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=-1,且拋物線經(jīng)過A(1,0),C(0,3)兩點(diǎn),與x軸交于點(diǎn)B.
(1)若直線y=mx+n經(jīng)過B、C兩點(diǎn),求直線BC和拋物線的解析式;
(2)在拋物線的對(duì)稱軸x=-1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求出點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)P為拋物線的對(duì)稱軸x=-1上的一個(gè)動(dòng)點(diǎn),求使△BPC為直角三角形的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E是AB上一點(diǎn),F(xiàn)是AD延長(zhǎng)線上一點(diǎn),且DF=BE.
(1)求證:CE=CF;
(2)若點(diǎn)G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)E、F分別在BC、AD上,且∠BAE=∠DCF.
(1)求證:△ABE≌△CDF;
(2)若AC⊥EF,試判斷四邊形AECF是什么特殊四邊形,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,直線CD與⊙O相切于C點(diǎn),AC平分∠DAB.
(1)求證:AD⊥CD;
(2)若AD=2, ,求⊙O的半徑R的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)問題進(jìn)行計(jì)算:
(1)計(jì)算: × ﹣4× ×(1﹣ )0;
(2)已知三角形兩邊長(zhǎng)為3,5,要使這個(gè)三角形是直角三角形,求出第三邊的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com