【題目】已知:點D、E、F分別是等邊△ABC三邊上的三等分點,AD、BE、CF兩兩相交于P、Q、R點,(如圖所示),求△PQR的面積與△ABC面積的比值.

【答案】SPQRSABC=17

【解析】

可作AG∥BCBE延長線于點G,作DH∥ABCF于點H,由平行線分線段成比例可得線段之間的比例關(guān)系,進而轉(zhuǎn)化為三角形的面積關(guān)系,即可求解結(jié)論.

解:作AG∥BCBE延長線于點G,作DH∥ABCF于點H,

則得:

AGBC=AEEC=12AGBD=34,

又由于DHBF=13,DHAF=16

所以DRAR=16,DRDA=17

從而SCDR=SBFC=SABC,

同理可得SBFQ= SAPE=SABC,

SPQRSBCESBCFSBFQSACDSAPESCDR)=SABC-SABC SABCSABC SABC SABC= SABC

因此SPQRSABC=17

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知,在RtABC中,ACB90°DBC邊上一點,連接AD,分別以CDAD為直角邊作RtCDERtADF,使DCEADF90°,點EFBC下方,連接EF

1)如圖1,當BCAC,CECD,DFAD時,

求證:①∠CADCDF,

BDEF;

2)如圖2,當BC2AC,CE2CD,DF2AD時,猜想BDEF之間的數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+bx+c經(jīng)過點A(﹣1,0)和點C04),交x軸正半軸于點B,連接AC,點E是線段OB上一動點(不與點O,B重合),以OE為邊在x軸上方作正方形OEFG,連接FB,將線段FB繞點F逆時針旋轉(zhuǎn)90°,得到線段FP,過點PPHy軸,PH交拋物線于點H,設(shè)點Ea,0).

1)求拋物線的解析式.

2)若AOCFEB相似,求a的值.

3)當PH2時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)的圖象如圖,根據(jù)圖象回答下列問題:

1)寫出方程的兩個根;

2)寫出不等式的解集;

3)寫出不等式的解集;

4)如果方程無實數(shù)根,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C、D在線段AB上,PCD是等邊三角形,且ACP∽△PDB

(1)求APB的大小.

(2)說明線段AC、CD、BD之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】9分)九年級數(shù)學興趣小組經(jīng)過市場調(diào)查,得到某種運動服每月的銷量與售價的相關(guān)信息如下表:

售價(元/件)

100

110

120

130


月銷量(件)

200

180

160

140


已知該運動服的進價為每件60元,設(shè)售價為元.

1)請用含x的式子表示:銷售該運動服每件的利潤是 元;月銷量是 件;(直接寫出結(jié)果)

2)設(shè)銷售該運動服的月利潤為元,那么售價為多少時,當月的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果批發(fā)商場經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克.經(jīng)市場調(diào)查發(fā)現(xiàn),在進貨價不變的情況下,若每千克漲價1元,日銷售量將減少20千克.

1)現(xiàn)該商場要保證每天盈利6 000元,同時又要顧客得到實惠,那么每千克應(yīng)漲價多少元?

2)若該商場單純從經(jīng)濟角度看,每千克這種水果漲價多少元,能使商場獲利最多?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+ca≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC;則下列結(jié)論:①abc0;②0;③ac-b+1=0;④OAOB=-.其中正確的結(jié)論(  )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列這些美麗的圖案都是在幾何畫板軟件中利用旋轉(zhuǎn)的知識在一個圖案的基礎(chǔ)上加工而成的,每一個圖案都可以看作是它的基本圖案繞著它的旋轉(zhuǎn)中心旋轉(zhuǎn)得來的,旋轉(zhuǎn)的角度正確的為(

A. B. C. D.

查看答案和解析>>

同步練習冊答案