【題目】填空,完成下列證明過程,并在括號中注明理由.

如圖,已知∠CGD=CAB,∠1=2,求證:∠ADF+CFE=180°

證明:∵∠CGD=CAB

DG______(______)

∴∠1=______(______)

∵∠1=2

∴∠2=3(______)

EF______(______)

∴∠ADF+CFE=180°(______)

【答案】AB;同位角相等,兩直線平行;∠3;兩直線平行,內(nèi)錯角相等;等量代換;AD;同位角相等,兩直線平行;兩直線平行,同旁內(nèi)角互補(bǔ)

【解析】

首先利用平行線的判定定理和性質(zhì)易得∠1=3,等量代換得∠2=3,再利用平行線的判定定理和性質(zhì)解答即可.

證明:∵∠CGD=CAB(已知),

DGAB(同位角相等,兩直線平行),

∴∠1=3(兩直線平行,內(nèi)錯角相等),

又∵∠1=2(已知),

∴∠2=3(等量代換),

EFAD(同位角相等,兩直線平行),

∴∠ADF+CFE=180°(兩直線平行,同旁內(nèi)角互補(bǔ)),

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,BD是斜邊上高動點P從點A出發(fā)沿AB邊由A向終點B的速度勻速移動,動點Q從點B出發(fā)沿射線BC的速度勻速移動,點P、Q同時出發(fā),當(dāng)點P停止運(yùn)動,點Q也隨之停止連接AQ,交射線BD于點設(shè)點P運(yùn)動時間為t秒.

在運(yùn)動過程中,的面積始終是的面積的2倍,為什么?

當(dāng)點Q在線段BC上運(yùn)動時,t為何值時,相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中將向下平移3個單位長度得到直線,直線x軸交于點C;直線x軸、y軸交于A、B兩點,且與直線交于點D

填空:點A的坐標(biāo)為______,點B的坐標(biāo)為______;

直線的表達(dá)式為______;

在直線上是否存在點E,使?若存在,則求出點E的坐標(biāo);若不存在,請說明理由.

如圖2,點P為線段AD上一點不含端點,連接CP,一動點HC出發(fā),沿線段CP以每秒1個單位的速度運(yùn)動到點P,再沿線段PD以每秒個單位的速度運(yùn)動到點D后停止,求點H在整個運(yùn)動過程中所用時間最少時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電信公司推出甲、乙兩種收費方式供手機(jī)用戶選擇:

甲種方式:每月收月租費5元,每分鐘通話費為元;

乙種方式:不收月租費,每分鐘通話費為元;

請分別寫出甲乙兩種收費方式每月付費與通話時間分鐘之間函數(shù)表達(dá)式;

如何根據(jù)通話時間的多少選擇付費方式,請給出你的方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】19屆亞運(yùn)會將于2022年在杭州舉行,“絲綢細(xì)節(jié)”助力杭州打動世界.杭州絲綢公司為亞運(yùn)會設(shè)計手工禮品,投入元錢,若以2條領(lǐng)帶和1條絲巾為一份禮品,則剛好可制作600份禮品;若以1條領(lǐng)帶和3條絲巾為一份禮品,則剛好可制作400份禮品.

1)若萬元,求領(lǐng)帶及絲巾的制作成本是多少?

2)若用元錢全部用于制作領(lǐng)帶,總共可以制作幾條?

3)若用元錢恰好能制作300份其他的禮品,可以選擇條領(lǐng)帶和條絲巾作為一份禮品(兩種都要有),請求出所有可能的的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)ABCD,猜想∠BPD與∠B.D的關(guān)系,說明理由.(提示:三角形的內(nèi)角和等于180°)

①填空或填寫理由

解:猜想∠BPD+B+D=360°

理由:過點PEFAB,

∴∠B+BPE=180°______

ABCD,EFAB,

___________(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行)

∴∠EPD+______=180°

∴∠B+BPE+EPD+D=360°

∴∠B+BPD+D=360°

②依照上面的解題方法,觀察圖(2),已知ABCD,猜想圖中的∠BPD與∠B.D的關(guān)系,并說明理由.

③觀察圖(3)(4),已知ABCD,直接寫出圖中的∠BPD與∠B.D的關(guān)系,不說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)解不等式,并把它的解集在數(shù)軸上表示出來.

2)解不等式組,并寫出它的所有整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系xOy中的點P(a,b),若點P′的坐標(biāo)為(a+kb,ka+b)(其中k為常數(shù),且k≠0),

則稱點P′為點P“k屬派生點.例如:P(1,4)的“2屬派生點P′(1+2×4,2×1+4),即P′(9,6).

(Ⅰ)點P(﹣2,3)的“3屬派生點”P′的坐標(biāo)為   

(Ⅱ)若點P“5屬派生點”P′的坐標(biāo)為(3,﹣9),求點P的坐標(biāo);

(Ⅲ)若點Px軸的正半軸上,點P“k屬派生點P′點,且線段PP′的長度為線段OP長度的2倍,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)=-x24x5,x4,若無論 x取何值,y 總?cè)?/span> , 中的最大值,則 y的最小值是_________

查看答案和解析>>

同步練習(xí)冊答案