【題目】如圖,平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣x+b(b為常數(shù),b>0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),半徑為5的圓⊙O與x軸正半軸相交于點(diǎn)C,與y軸相交于D、E兩點(diǎn).
(1)若直線AB交劣弧 于P、Q兩點(diǎn)(異于C、D)
①當(dāng)P點(diǎn)坐標(biāo)為(3,4)時(shí),求b值;
②求∠CPE的度數(shù),并用含b的代數(shù)式表示弦PQ的長(zhǎng)(寫出b的取值范圍);
(2)當(dāng)b=6時(shí),線段AB上存在幾個(gè)點(diǎn)F,使∠CFE=45°?請(qǐng)說明理由.
【答案】
(1)
解:①∵點(diǎn)P(3,4)在直線AB上,
∴﹣3+b=4,
∴b=7,②∵∠COE=90°,
∴∠CPE= ∠COE=45°,
如圖1,過點(diǎn)O作OM⊥AB于M,連接OP,
∵直線AB的解析式為y=﹣x+b①,
∴直線OM的解析式為y=x②,
聯(lián)立①②解得點(diǎn)M( b, b),
∴OM2= b2,
在Rt△POM中,OP=5,根據(jù)勾股定理得,PM= = ,
∴PQ=2PM= ,
當(dāng)點(diǎn)P和點(diǎn)D重合時(shí),b=5
當(dāng)OM=5時(shí),b=﹣5 (舍)或b=5 ,
∴5≤b<5 ,
即:PQ= (5≤b<5 )
(2)
解:當(dāng)b=6時(shí),線段AB上存在2個(gè)點(diǎn)F,使∠CFE=45°,
理由:由(1)②知,點(diǎn)F在劣弧 上時(shí),∠CFE=45°,
由(1)②知,OM=5時(shí),即:b=5 時(shí),直線AB與⊙O相切,
當(dāng)點(diǎn)B與點(diǎn)D重合時(shí),b=5,
∴當(dāng)b=6時(shí),在5到5 之間,
∴線段AB與⊙Q有兩個(gè)交點(diǎn),
即:當(dāng)b=6時(shí),線段AB上存在2個(gè)點(diǎn)F,使∠CFE=45°.
【解析】(1)①直接將點(diǎn)P的坐標(biāo)代入直線y=﹣x+b中,即可求出b的值,②先求出直線OM的解析式,即可得出點(diǎn)M的坐標(biāo),進(jìn)而得出OM,再用勾股定理即可得出PM,即可得出PQ;(2)先判斷出點(diǎn)F是劣弧 上時(shí),∠CFE=45°,進(jìn)而判斷b=6是線段AB與⊙O的交點(diǎn)的個(gè)數(shù)即可得出結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)我市開展了“尋找雷鋒足跡”的活動(dòng),某中學(xué)為了了解七年級(jí)800名學(xué)生在“學(xué)雷鋒活動(dòng)月”中做好事的情況,隨機(jī)調(diào)查了七年級(jí)50名學(xué)生在一個(gè)月內(nèi)做好事的次數(shù),并將所得數(shù)據(jù)繪制成統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息解答下列問題: ①所調(diào)查的七年級(jí)50名學(xué)生在這個(gè)月內(nèi)做好事次數(shù)的平均數(shù)是 , 眾數(shù)是 , 極差是 :
②根據(jù)樣本數(shù)據(jù),估計(jì)該校七年級(jí)800名學(xué)生在“學(xué)雷鋒活動(dòng)月”中做好事不少于4次的人數(shù).
【答案】解:①平均數(shù);(2×5+3×6+4×13+5×16+6×10)÷50=4.4;
眾數(shù):5次;
極差:6﹣2=4;
②做好事不少于4次的人數(shù):800× =624;
(1)甲口袋有2個(gè)相同的小球,它們分別寫有數(shù)字1和2;乙口袋中裝有3個(gè)相同的小球,它們分別寫有數(shù)字3、4和5,從這兩個(gè)口袋中各隨機(jī)地取出1個(gè)小球. ①用“樹狀圖法”或“列表法”表示所有可能出現(xiàn)的結(jié)果;
②取出的兩個(gè)小球上所寫數(shù)字之和是偶數(shù)的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】古希臘著名的畢達(dá)哥拉斯學(xué)派把1,3,6,10…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個(gè)大于1的“正方形數(shù)”都可以看作兩個(gè)相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是( 。
A. 13=3+10 B. 25=9+16 C. 36=15+21 D. 49=18+31
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+5x+3﹣3m=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)若m為負(fù)整數(shù),求此時(shí)方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AC平分∠BAD,BC=CD=10,AB=21,AD=9.求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖1,Rt△ABC中,∠ACB=90°,D為AB中點(diǎn),DE、DF分別交AC于E,交BC于F,且DE⊥DF.
(1)如果CA=CB,求證:AE2+BF2=EF2;
(2)如圖2,如果CA<CB,(1)中結(jié)論還能成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題為真命題的是
A.有兩邊及一角對(duì)應(yīng)相等的兩個(gè)三角形全等
B.方程x2+2x+3=0有兩個(gè)不相等的實(shí)數(shù)根
C.面積之比為1∶2的兩個(gè)相似三角形的周長(zhǎng)之比是1∶4
D.順次連接任意四邊形各邊中點(diǎn)得到的四邊形是平行四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜邊AB的垂直平分線交AC于點(diǎn)D,點(diǎn)F在AC上,點(diǎn)E在BC的延長(zhǎng)線上,CE=CF,連接BF,DE.線段DE和BF在數(shù)量和位置上有什么關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,正方形ABCD中,點(diǎn)O是對(duì)角線AC的中點(diǎn),點(diǎn)P是線段AO上(不與A、O重合)的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PE⊥PB且交邊CD于點(diǎn)E.
(1)求證:PB=PE;
(2)過點(diǎn)E作EF⊥AC于點(diǎn)F,如圖2,若正方形ABCD的邊長(zhǎng)為2,則在點(diǎn)P運(yùn)動(dòng)的過程中,PF的長(zhǎng)度是否發(fā)生變化?若不變,請(qǐng)直接寫出這個(gè)不變的值;若變化,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com