【題目】順次連接對角線互相垂直的四邊形的各邊中點(diǎn),所得圖形一定是( )
A.正方形
B.矩形
C.菱形
D.梯形
【答案】B
【解析】解:如圖,AC⊥BD,E、F、G、H分別為各邊的中點(diǎn),連接點(diǎn)E、F、G、H. ∵E、F、G、H分別為各邊的中點(diǎn),
∴EF∥AC,GH∥AC,EH∥BD,F(xiàn)G∥BD(三角形的中位線平行于第三邊),
∴四邊形EFGH是平行四邊形(兩組對邊分別平行的四邊形是平行四邊形),
∵AC⊥BD,EF∥AC,EH∥BD,
∴∠EMO=∠ENO=90°,
∴四邊形EMON是矩形(有三個角是直角的四邊形是矩形),
∴∠MEN=90°,
∴四邊形EFGH是矩形(有一個角是直角的平行四邊形是矩形).
故選:B.
根據(jù)三角形中位線的性質(zhì),可得到這個四邊形是平行四邊形,再由對角線垂直,能證出有一個角等于90°,則這個四邊形為矩形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組數(shù)中,數(shù)值相等的是( )
A. (﹣2)3與﹣23 B. 23與32
C. (﹣3)2與﹣32 D. ﹣(-2)與﹣|﹣2|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一幅直角三角板疊放在一起,使直角頂點(diǎn)重合于點(diǎn)O.
(1)若∠AOC=35°,求∠AOD的度數(shù);
(2)問:∠AOC=∠BOD嗎?說明理由;
(3)寫出∠AOD與∠BOC所滿足的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,已知E為BC的中點(diǎn),連接AE并延長交DC的延長線于點(diǎn)F,連接BF.
(1)求證:AB=CF;
(2)當(dāng)BC與AF滿足什么數(shù)量關(guān)系時(shí),四邊形ABFC是矩形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組數(shù)中,以a、b、c為邊長的三角形不是直角三角形的是( )
A.a=3,b=4,c=5
B.a=5,b=12,c=13
C.a=1,b=2,c=
D.a= ,b=2,c=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鐵路部門規(guī)定旅客免費(fèi)攜帶行李箱的長、寬、高之和不超過160cm,某廠家生產(chǎn)符合該規(guī)定的行李箱,已知行李箱的高為30cm,長與寬的比為3:2,則該行李箱的長的最大值為cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD及等邊△ABE,已知:∠BAC=30°,EF⊥AB,垂足為F,連接DF.
(1)試說明AC=EF;
(2)求證:四邊形ADFE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將點(diǎn)A(3,2)沿x軸向左平移4個單位長度得到點(diǎn)A′,則點(diǎn)A′關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)是( )
A. (-3,2) B. (-1,2) C. (1,2) D. (1,-2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com