【題目】今年5月,某大型商業(yè)集團(tuán)隨機(jī)抽取所屬的部分商業(yè)連鎖店進(jìn)行評(píng)估,將抽取的格商業(yè)連鎖店按照評(píng)估成績(jī)分成了A、B、C、D四個(gè)等級(jí),并繪制了如圖不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖.
根據(jù)以上信息,解答下列問(wèn)題:
(1)本次評(píng)估隨機(jī)抽取了 家商業(yè)連鎖店;
(2)請(qǐng)補(bǔ)充完整扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖,并在圖中標(biāo)注相應(yīng)數(shù)據(jù);
(3)從A、B兩個(gè)等級(jí)的商業(yè)連鎖店中任選2家介紹營(yíng)銷經(jīng)驗(yàn),請(qǐng)用列表或畫樹狀圖的方法求其中至少有一家是A等級(jí)的概率.
【答案】(1)25(2)見解析(3)
【解析】
(1)根據(jù)A級(jí)的店數(shù)和所占的百分比求出總店數(shù);
(2)求出B級(jí)的店數(shù)所占的百分比,補(bǔ)全圖形即可;
(3)畫出樹狀圖,由概率公式即可得出答案.
(1)2÷8%=25(家),
即本次評(píng)估隨機(jī)抽取了25家商業(yè)連鎖店
故答案為:25;
(2)252156=2,2÷25×100%=8%,
補(bǔ)全扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖,
如圖所示:
(3)畫樹狀圖,
共有12個(gè)可能的結(jié)果,至少有一家是A等級(jí)的結(jié)果有10個(gè),
∴P(至少有一家是A等級(jí))==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,若干同樣的正五邊形排成環(huán)狀,圖中所示的前3個(gè)正五邊形,要完成這一圓環(huán)還需_____個(gè)正五邊形,若將同樣的正六邊形排成環(huán)狀,則需____個(gè)正六邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的頂點(diǎn)的坐標(biāo)為.
(1)求,的值;
(2)已知點(diǎn)為拋物線上異于的一點(diǎn),且點(diǎn)橫、縱坐標(biāo)相等,為軸上任意一點(diǎn),當(dāng)取最小值時(shí),求出點(diǎn)坐標(biāo)和此時(shí)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,給定一個(gè)正方形,要通過(guò)畫線將其分割成若干個(gè)互不重疊的正方形.第1次畫線分割成4個(gè)互不重疊的正方形,得到圖2;第2次畫線分割成7個(gè)互不重疊的正方形,得到圖3……以后每次只在上次得到圖形的左上角的正方形中畫線.
嘗試:第3次畫線后,分割成 個(gè)互不重疊的正方形;
第4次畫線后,分割成 個(gè)互不重疊的正方形.
發(fā)現(xiàn):第n次畫線后,分割成 個(gè)互不重疊的正方形;并求第2020次畫線后得到互不重疊的正方形的個(gè)數(shù).
探究:若干次畫線后,能否得到1001個(gè)互不重疊的正方形?若能,求出是第幾次畫線后得到的;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線的對(duì)稱軸是.且過(guò)點(diǎn)(,0),有下列結(jié)論:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④2c-3b>0;⑤a﹣b≥m(am﹣b)(m≠-1);其中所有正確的結(jié)論是( )
A.①②③B.①③④C.①③④⑤D.②④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在平面直角坐標(biāo)系中,四邊形OABC是正方形,點(diǎn)A的坐標(biāo)是(4,0),點(diǎn)p為邊AB上的一點(diǎn),CPB=60°,沿CP折疊正方形后,點(diǎn)B落在平面內(nèi)B’處,B’的坐標(biāo)為( )
A.(2, 2)B.(, 2-2)C.(2, 4-2)D.(, 4-2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是正方形,點(diǎn)的坐標(biāo)是.
(1)正方形的邊長(zhǎng)為 ,點(diǎn)的坐標(biāo)是 ;
(2)將正方形繞點(diǎn)順時(shí)針旋轉(zhuǎn),點(diǎn),,旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為,,,求點(diǎn)的坐標(biāo)及旋轉(zhuǎn)后的正方形與原正方形的重疊部分的面積;
(3)動(dòng)點(diǎn)從點(diǎn)出發(fā),沿折線方向以1個(gè)單位/秒的速度勻速運(yùn)動(dòng),同時(shí),另一動(dòng)點(diǎn)從點(diǎn)出發(fā),沿折線方向以2個(gè)單位/秒的速度勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為秒,當(dāng)它們相遇時(shí)同時(shí)停止運(yùn)動(dòng),當(dāng)為等腰三角形時(shí),求出的值(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年11月22日,教育部發(fā)布關(guān)于《中小學(xué)教師實(shí)施教育懲戒規(guī)則(征求意見稿)》公開征求意見的通知,征求意見稿指出;教育懲戒是教師履行救育教學(xué)職責(zé)的必要手段和法定職權(quán).教育懲戒分為:一般懲戒,:較重懲戒,:嚴(yán)重懲戒,:強(qiáng)制措施,共四個(gè)層次.為了解家長(zhǎng)對(duì)教育懲戒的看法,某中學(xué)對(duì)學(xué)生家長(zhǎng)進(jìn)行了隨機(jī)調(diào)查,要求每位家長(zhǎng)選擇其中最關(guān)注的一個(gè)層次提出意見,學(xué)校對(duì)收集的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:
(1)被調(diào)查的總?cè)藬?shù)是______人;
(2)扇形統(tǒng)計(jì)圖中部分對(duì)應(yīng)的圓心角的度數(shù)為______;
(3)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)某班主任對(duì)學(xué)生進(jìn)行了紀(jì)律教育,要求小明和小軍分別從題中所述的四個(gè)層次中隨機(jī)選擇一個(gè)層次說(shuō)明懲戒內(nèi)容.請(qǐng)用列表法或畫樹狀圖法求兩人選擇不同教育懲戒層次的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線與x軸相交于不同的兩點(diǎn),
(1)求的取值范圍
(2)證明該拋物線一定經(jīng)過(guò)非坐標(biāo)軸上的一點(diǎn),并求出點(diǎn)的坐標(biāo);
(3)當(dāng)時(shí),由(2)求出的點(diǎn)和點(diǎn)構(gòu)成的的面積是否有最值,若有,求出最值及相對(duì)應(yīng)的值;若沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com