精英家教網 > 初中數學 > 題目詳情
已知:如圖,在梯形ABCD中,AD // BC,ABBC,點M在邊BC上,且∠MDB =∠ADB

(1)求證:BM=CM;
(2)作BEDM,垂足為點E,并交CD于點F
求證:
(1)證明線段相等,首選全等三角形,不行再選擇證明等腰三角形,繼而使用等量代換證明。
(2)通過證明相似形,找出相關比例,繼而證明幾何題中的代數關系。

試題分析: 證明:(1)∵ ABBC,∴ ∠ABC = 90º.
∵ AD // BC,∴ ∠CBD =∠ADB,∠BAD +∠ABC = 180º.
即得 ∠BAD = 90º.
∵ ,∴ 
又∵ ∠CBD =∠ADB
∴ △BCD∽△DBA
∴ ∠BDC =∠BAD = 90º.
∴ ∠DBC +∠C = 90º.
∵ ∠MDB=∠ADB,∠MBD =∠ADB,
∴ ∠MBD =∠MDB.∴ BM = MD
又∵ ∠BDM +∠CDM =∠BDC = 90º,
∴ ∠C =∠CDM
∴ CM = MD.∴ BM = CM
(2)∵ BEDM,
∴ ∠DEF =∠BDC = 90º.
∴ ∠FDE +∠DFE = 90º,∠DBF +∠DFE = 90º.
∴ ∠FDE =∠DBF
又∵ ∠FDE =∠C,
∴ ∠DBF =∠C
于是,由 ∠FDB =∠BDC = 90º,∠DBF =∠C
得 △FDB∽△BDC
∴ .即 
∵ BM = CM,∠BDC = 90º,∴ BC = 2DM
又∵ ,
∴ 
點評:該題主要考查學生對相似三角形性質的掌握,同時學生要學會用逆向思維思考題目的解決方法,由邊相等想到角相等、全等三角形,或者線段的相加減。
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:填空題

如圖,在矩形中,,,點在邊  上的,過點,交邊于點,再把沿對折,點的對應點恰好落在邊上,則CP=       .

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

已知線段AB=1,點C是線段AB的黃金分割點,則較小線段BC長為      ;

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

下列命題: (1)兩直線平行,同旁內角互補(2) 同角的補角相等. (3) 直角三角形的兩個銳角互余. (4) 同位角相等。其中真命題的個數( )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在矩形ABCD中,AD=4,M是AD的中點,點E是線段AB上一動點,連接EM并延長交線段CD的延長線于點F.

(1)如圖1,求證:AE=DF;
(2)如圖2,若AB=2,過點M作 MG⊥EF交線段BC于點G,求證:△GEF是等腰直角三角形
(3)如圖3,若AB=,過點M作 MG⊥EF交線段BC的延長線于點G.
①直接寫出線段AE長度的取值范圍;
②判斷△GEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

已知線段b是線段a、c的比例中項,且a = 1,b = 2,那么c =      

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜邊AB的中點,過D1作D1E1⊥AC于E1,連結BE1交CD1于D2;過D2作D2E2⊥AC于E2,連結BE2交CD1于D3;過D3作D3E3⊥AC于E3,…,如此繼續(xù),可以依次得到點E4、E5、…、E2013,分別記△BCE1、△BCE2、△BCE3、···、△BCE2013的面積為S1、S2、S3、…、S2013.則S2013的大小為(    ).
A.B.C.D.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

在Rt△ABC中,∠A=90°,AB=6,AC=8,點D為邊BC的中點,DE⊥BC交邊AC于點E,點P為射線AB上一動點,點Q為邊AC上一動點,且∠PDQ=90°.

(1)求ED、EC的長;
(2)若BP=2,求CQ的長;
(3)記線段PQ與線段DE的交點為點F,若△PDF為等腰三角形,求BP的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,在△ABC中,∠ACB=90°,AC=4,BC=3,O是邊AB的中點,過點O的直線l將△ABC分割成兩個部分,若其中的一個部分與△ABC相似,則滿足條件的直線l共有__條

查看答案和解析>>

同步練習冊答案