【題目】解方程:
(1)5x﹣6=3x+2;
(2)1﹣3(8﹣x)=﹣2(15﹣2x);
(3)1;
(4)1.
【答案】(1)x=4;(2)x=7;(3);(4)
【解析】
(1)移項(xiàng)、合并同類(lèi)項(xiàng)、系數(shù)化1即可;
(2)去括號(hào)、移項(xiàng)、合并同類(lèi)項(xiàng)、系數(shù)化1即可;
(3)去分母、去括號(hào)、移項(xiàng)、合并同類(lèi)項(xiàng)、系數(shù)化1即可;
(4)去分母、去括號(hào)、移項(xiàng)、合并同類(lèi)項(xiàng)、系數(shù)化1即可.
解:(1)5x﹣6=3x+2
移項(xiàng),得5x﹣3x =6+2
合并同類(lèi)項(xiàng),得2x=8
系數(shù)化1,得x=4
(2)1﹣3(8﹣x)=﹣2(15﹣2x)
去括號(hào),得1﹣24+3x=-30+4x
移項(xiàng),得3x-4x =-30+24-1
合并同類(lèi)項(xiàng),得-x=-7
系數(shù)化1,得x=7
(3)1
去分母,得
去括號(hào),得
移項(xiàng),得
合并同類(lèi)項(xiàng),得
系數(shù)化1,得
(4)1
去分母,得
去括號(hào),得
移項(xiàng),得
合并同類(lèi)項(xiàng),得
系數(shù)化1,得
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1的小正方形網(wǎng)格中,點(diǎn)A、B、C、D都在這些小正方形的頂點(diǎn)上,AB、CD相交于點(diǎn)O,則tan∠AOD=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知反比例函數(shù)的圖象與反比例函數(shù)的圖象關(guān)于軸對(duì)稱(chēng),,是函數(shù)圖象上的兩點(diǎn),連接,點(diǎn)是函數(shù)圖象上的一點(diǎn),連接,.
(1)求,的值;
(2)求所在直線的表達(dá)式;
(3)求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某校數(shù)學(xué)興趣小組利用自制的直角三角形硬紙板DEF來(lái)測(cè)量操場(chǎng)旗桿AB的高度,他們通過(guò)調(diào)整測(cè)量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點(diǎn)A在同一直線上,已知DE=0.5米,EF=0.25米,目測(cè)點(diǎn)D到地面的距離DG=1.5米,到旗桿的水平距離DC=20米,求旗桿的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點(diǎn)D是BC邊的中點(diǎn),BD=2,tanB=.
(1)求AD和AB的長(zhǎng);
(2)求sin∠BAD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線y=x2+bx+c經(jīng)過(guò)A、C兩點(diǎn),與x軸的另一交點(diǎn)為點(diǎn)B.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)D為直線AC上方拋物線上一動(dòng)點(diǎn);
①連接BC、CD,設(shè)直線BD交線段AC于點(diǎn)E,△CDE的面積為S1, △BCE的面積為S2, 求的最大值;
②過(guò)點(diǎn)D作DF⊥AC,垂足為點(diǎn)F,連接CD,是否存在點(diǎn)D,使得△CDF中的某個(gè)角恰好等于∠BAC的2倍?若存在,求點(diǎn)D的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,BE∥GF,∠1=∠3,∠DBC=70°,求∠EDB的大。
閱讀下面的解答過(guò)程,并填空(理由或數(shù)學(xué)式)
解:∵BE∥GF(已知)
∴∠2=∠3( )
∵∠1=∠3( )
∴∠1=( )( )
∴DE∥( )( )
∴∠EDB+∠DBC=180°( )
∴∠EDB=180°﹣∠DBC(等式性質(zhì))
∵∠DBC=( )(已知)
∴∠EDB=180°﹣70°=110°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=BC,BE⊥AC于點(diǎn)E,AD⊥BC于點(diǎn)D,∠BAD=45°,AD與BE交于點(diǎn)F,連接CF.
(1)求證:BF=2AE;
(2)若CD=3,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC。
理由如下:
AD⊥BC于D,EG⊥BC于G,(已知)
∠ADC=∠EGC=90°,( )
AD‖EG,( )
∠1=∠2,( )
=∠3,(兩直線平行,同位角相等)
又∠E=∠1(已知)
= (等量代換)
AD平分∠BAC( )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com