【題目】(探究)如圖①,在四邊形ABCD中,∠A=∠C=90°,AD=CD,點(diǎn)E、F分別在邊AB、BC上,ED=FD,證明:∠ADE=∠CDF.
(拓展)如圖②,在菱形ABCD中,∠A=120°,點(diǎn)E、F分別在邊AB、BC上,ED=FD.若∠EDF=30°,求∠CDF的大。
【答案】【探究】證明解析;【拓展】∠CDF=15°.
【解析】
(探究)根據(jù)HL證明Rt△AED≌Rt△CFD,可得結(jié)論;
(拓展)如圖②,作輔助線,構(gòu)建全等三角形,證明△AMD≌△CND,則MD=CN,∠MDA=∠NDC,根據(jù)菱形的性質(zhì)得:∠ADC=60°,所以∠CDF+∠ADE=60°-30°=30°,可得結(jié)論.
(探究)如圖①,在Rt△AED和Rt△CFD中,
∵ ,
∴Rt△AED≌Rt△CFD(HL),
∴∠ADE=∠CDF;
(拓展)解:如圖②,過點(diǎn)D作DM⊥BA交BA延長線于點(diǎn)M,作DN⊥BC交BC延長線于點(diǎn)N,
∴∠AMD=∠CND=90°,
∵四邊形ABCD是菱形,
∴AD=CD,∠BAD=∠BCD,
∴∠MAD=∠NCD,
∴△AMD≌△CND,
∴MD=CN,∠MDA=∠NDC,
由探究得:∠MDE=∠NDF,
∴∠MDE﹣∠MDA=∠NDF﹣∠NDC,即∠ADE=∠CDF,
∵四邊形ABCD是菱形,∠BAC=120°,
∴∠ADC=60°,
∵∠EDF=30°,
∴∠CDF+∠ADE=60°﹣30°=30°,
∵∠ADE=∠CDF,
∴∠CDF=15°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某農(nóng)場老板準(zhǔn)備建造一個矩形羊圈,他打算讓矩形羊圈的一面完全靠著墻,墻可利用的長度為,另外三面用長度為的籬笆圍成(籬笆正好要全部用完,且不考慮接頭的部分),設(shè)矩形羊圈的面積為,垂直于墻的一邊長為.
填空:與的函數(shù)關(guān)系式________,是的________函數(shù),的取值范圍是________;
若要使矩形羊圈的面積為,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系中,△ABC的三個頂點(diǎn)的坐標(biāo)分別為A(2,2),B(1,﹣1),C(3,0).
(1)在圖1中,畫出以點(diǎn)O為位似中心,放大△ABC到原來的2倍的△A1B1C1;
(2)若P(a,b)是AB邊上一點(diǎn),平移△ABC之后,點(diǎn)P的對應(yīng)點(diǎn)P'的坐標(biāo)是(a+3,b﹣2),在圖2中畫出平移后的△A2B2C2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小敏的爸爸買了某項體育比賽的一張門票,她和哥哥兩人都想去觀看,可門票只有一張,讀九年級哥哥想了一個辦法,拿出張撲克牌,將數(shù)字、、、的四張給了小敏,將數(shù)字、、、的四張撲克牌留給自己,并按如下游戲規(guī)則進(jìn)行:小敏和哥哥從各自的四張牌中隨機(jī)抽出一張,然后將抽出兩張牌數(shù)字相加,如果和為偶數(shù),則小敏去;如果和為奇數(shù),則哥哥去.
(1)請用畫樹形圖或列表的方法求小敏去看比賽的概率;
(2)小敏知道哥哥設(shè)計的游戲規(guī)則不公平,于是她提議兩人交換一張牌,使游戲規(guī)則公平后再進(jìn)行比賽,你知道小敏是如何提議的嗎?說說你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校有兩個校區(qū):南校和北校,這兩個校區(qū)九年級學(xué)生各有300名,為了解這兩個校區(qū)九年級學(xué)生的英語單詞掌握情況,進(jìn)行了抽樣調(diào)查,過程如下:
①收集數(shù)據(jù),從南校和北校兩個校區(qū)的九年級各隨機(jī)抽取10名學(xué)生,進(jìn)行英語單詞測試,測試成績(百分制)如下:
南校 92 100 86 89 73 98 54 95 98 85
北校 100 100 94 83 74 86 75 100 73 75
②整理、描述數(shù)據(jù),按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
成績x 人數(shù) 部門 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
南校 | 1 | 0 | 1 | 3 | 5 |
北校 | 0 | 0 | 4 | 2 | 4 |
(說明:成績90分及以上為優(yōu)秀,80~89分分為良好,60~79分為合格,60分以下為不合格)
③分析數(shù)據(jù),對上述數(shù)據(jù)進(jìn)行分析,分別求出了兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表:
校區(qū) | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
南校 | 87 | 90.5 |
| 179.4 |
北校 | 86 |
|
| 121.6 |
④得出結(jié)論.
結(jié)合上述統(tǒng)計全過程,回答下列問題:
(1)補(bǔ)全③中的表格.
(2)請估計北校九年級學(xué)生英語單詞掌握優(yōu)秀的人數(shù).
(3)你認(rèn)為哪個校區(qū)的九年級學(xué)生英語單詞掌握得比較好?說明你的理由.(至少從兩個不同的角度說明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.
求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線MN交AC于點(diǎn)D,交AB于點(diǎn)E.
(1)若∠A=40°,求∠DBC的度數(shù);
(2)若AE=6,△CBD的周長為20,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】依據(jù)國家實(shí)行的《國家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》,對懷柔區(qū)初一學(xué)生身高進(jìn)行抽樣調(diào)查,以便總結(jié)懷柔區(qū)初一學(xué)生現(xiàn)存的身高問題,分析其影響因素,為學(xué)生的健康發(fā)展及學(xué)校體育教育改革提出合理項建議.已知懷柔區(qū)初一學(xué)生有男生840人,女生800人,他們的身高在150≤x<175范圍內(nèi),隨機(jī)抽取初一學(xué)生進(jìn)行抽樣調(diào)查.抽取的樣本中,男生比女生多2人,利用所得數(shù)據(jù)繪制如下統(tǒng)計圖表:
身高情況分組表
組別 | 身高(cm) |
A | 150≤x<155 |
B | 155≤x<160 |
C | 160≤x<165 |
D | 165≤x<170 |
E | 170≤x<175 |
根據(jù)統(tǒng)計圖表提供的信息,下列說法中
①抽取男生的樣本中,身高在155≤x<165之間的學(xué)生有18人;
②初一學(xué)生中女生的身高的中位數(shù)在B組;
③抽取的樣本中,抽取女生的樣本容量是38;
④初一學(xué)生身高在160≤x<170之間的學(xué)生約有800人.
其中合理的是( 。
A.①②B.①④C.②④D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣為了落實(shí)中央的“強(qiáng)基惠民工程”,計劃將某村的居民自來水管道進(jìn)行改造.該工程若由甲隊單獨(dú)施工恰好在規(guī)定時間內(nèi)完成;若乙隊單獨(dú)施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊先合做15天,那么余下的工程由甲隊單獨(dú)完成還需5天.
(1)這項工程的規(guī)定時間是多少天?
(2)已知甲隊每天的施工費(fèi)用為6500元,乙隊每天的施工費(fèi)用為3500元.為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙隊合做來完成.則該工程施工費(fèi)用是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com