【題目】某校學生會發(fā)現(xiàn)同學們就餐時剩余飯菜較多,浪費嚴重,于是準備在校內倡導光盤行動,讓同學們珍惜糧食,為了讓同學們理解這次活動的重要性,校學生會在某天午餐后,隨機調查了部分同學這餐飯菜的剩余情況,并將結果統(tǒng)計后繪制成了如圖所示的不完整的統(tǒng)計圖.

1)這次被調查的同學共有  人;

2)補全條形統(tǒng)計圖,并在圖上標明相應的數(shù)據(jù);

3)扇形統(tǒng)計圖中圓心角α  度;

4)校學生會通過數(shù)據(jù)分析,估計這次被調查的所有學生一餐浪費的食物可以供50人食用一餐.據(jù)此估算,該校18000名學生一餐浪費的食物可供多少人食用一餐.

【答案】11000;(2)補全的條形統(tǒng)計圖如圖所示;見解析;(372;(4)該校18000名學生一餐浪費的食物可供900人食用一餐.

【解析】

1)根據(jù)不剩的學生數(shù)和所占的百分比可以求得這次被調查的同學數(shù);

2)根據(jù)(1)中的結果和條形統(tǒng)計圖中的數(shù)據(jù)可以求得剩少量的學生數(shù),從而可以將條形統(tǒng)計圖補充完整;

3)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得扇形統(tǒng)計圖中圓心角α的度數(shù);

4)根據(jù)題目中的數(shù)據(jù)可以得到該校18000名學生一餐浪費的食物可供多少人食用一餐.

1600÷60%1000(人),

即這次被調查的同學共有1000人,

故答案為:1000;

2)剩少量的學生有:100060015050200(人),

補全的條形統(tǒng)計圖如右圖所示;

3)扇形統(tǒng)計圖中圓心角α360°×72°,

故答案為:72;

418000÷1000×50900(人),

答:該校18000名學生一餐浪費的食物可供900人食用一餐.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A在第一象限,BA⊥y軸于點B,反比例函數(shù)y=x0)的圖象與線段AB相交于點C,且C是線段AB的中點,若△OAB的面積為3,則k的值為( )

A.B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A1B1C1A2B2C2,A3B3C3,AnBnCn均為等腰直角三角形,且C1C2C3Cn90°,點A1,A2A3,,An和點B1,B2,B3,Bn分別在正比例函數(shù)yxy=﹣x的圖象上,且點A1,A2A3An的橫坐標分別為1,23…n,線段A1B1,A2B2,A3B3,AnBn均與y軸平行.按照圖中所反映的規(guī)律,則AnBnCn的頂點Cn的坐標是____.(其中n為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是等邊三角形內一點,將線段繞點順時針旋轉得到線段,連接.若,,,則四邊形的面積為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形ABCD是矩形,AD∥x軸,A),AB=1AD=2

1)直接寫出B、C、D三點的坐標;

2)將矩形ABCD向右平移m個單位,使點A、C恰好同時落在反比例函數(shù))的圖象上,得矩形A′B′C′D′.求矩形ABCD的平移距離m和反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),兩個等腰直角三角形ABCDEF有一條邊在同一條直線l上,DE2,AB=1.將直線EB繞點E逆時針旋轉45°,交直線AD于點M.將圖(1)中的ABC沿直線l向右平移,設C、E兩點間的距離為k.請解答下列問題:

1)①當點C與點F重合時,如圖(2)所示,此時的值為 .

②在平移過程中,的值為 (用含k的代數(shù)式表示).

2)將圖(2)中的ABC繞點C逆時針旋轉,使點A落在線段DF上,如圖(3)所示,將直線EB繞點E逆時針旋轉45°,交直線AD于點M,請補全圖形,并計算的值.

3)將圖(1)中的ABC繞點C逆時針旋轉αα≤45°),將直線EB繞點E逆時針旋轉45°,交直線AD于點M,計算的值(用含k的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1中,,上一動點,且,的延長線交于點,連接

1)①求證:;

②若,當時,求的長;

2)如圖2,當時,求證:平分

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的對角線AC,BD相交于點O.E,F(xiàn)AC上的兩點,并且AE=CF,連接DE,BF.

(1)求證:DOE≌△BOF;

(2)若BD=EF,連接DE,BF.判斷四邊形EBFD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,菱形OABC的邊長為2,點A在第一象限,點C在x軸正半軸上,AOC=60°,若將菱形OABC繞點O順時針旋轉75°,得到四邊形OA′B′C′,則點B的對應點B′的坐標為_____

查看答案和解析>>

同步練習冊答案