【題目】某超市計劃購進(jìn)甲、乙兩種商品,甲種商品的進(jìn)價比乙種商品的進(jìn)價每件多80元,若用720元購進(jìn)甲種商品的件數(shù)與用360元購進(jìn)乙種商品的件數(shù)相同.
(1)求甲、乙兩種商品的進(jìn)價各是多少元?
(2)已知甲種商品的售價為240元/件,乙種商品的售價為130元/件,若超市銷售甲、乙兩種商品共80件,其中銷售甲種商品為件(),設(shè)銷售完80件甲、乙兩種商品的總利潤為元,求與之間的函數(shù)關(guān)系式,并求出的最小值.
【答案】(1)甲、乙兩種商品的進(jìn)價每件分別是160元,80元;(2)當(dāng)時,(元).
【解析】
(1)根據(jù)用720元購進(jìn)甲種商品的件數(shù)與用360元購進(jìn)乙種商品的件數(shù)相同列出方程,解方程即可;
(2)根據(jù)總利潤=甲種商品一件的利潤×甲種商品的件數(shù)+乙種商品一件的利潤×乙種商品的件數(shù)列出w與a之間的函數(shù)關(guān)系式,再根據(jù)一次函數(shù)的性質(zhì)即可求出w的最小值.
解:(1)設(shè)乙種商品的進(jìn)價每件為元,
根據(jù)題意得:,
解得,
經(jīng)檢驗(yàn)是方程的根,
∴元,
∴甲、乙兩種商品的進(jìn)價每件分別是160元,80元.
(2)∵甲種商品件,
∴乙種商品為件,
據(jù)題意得:,
由知的值隨值的增大而增大,
∴當(dāng)時,(元).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,邊AB的垂直平分線交邊BC于點(diǎn)D,邊AC的垂直平分線交邊BC于點(diǎn)E,連結(jié)AD,AE,則的度數(shù)為______用含的代數(shù)式表示
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A、B的坐標(biāo)分別是A(3,2)、B(1,3).△AOB繞點(diǎn)O逆時針旋轉(zhuǎn)90°后得到△A1OB1.(直接填寫答案)
(1)點(diǎn)A關(guān)于點(diǎn)O中心對稱的點(diǎn)的坐標(biāo)為 ;
(2)點(diǎn)A1的坐標(biāo)為 ;
(3)在旋轉(zhuǎn)過程中,點(diǎn)B經(jīng)過的路徑為弧BB1,那么弧BB1的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校中學(xué)生對《最強(qiáng)大腦》、《朗讀者》、《中國詩詞大會》、《出彩中國人》四個電視節(jié)目的喜愛情況,隨機(jī)抽取了x名學(xué)生進(jìn)行調(diào)查統(tǒng)計(要求每名學(xué)生選出并且只能選出一個自己最喜愛的節(jié)目),并將調(diào)查結(jié)果繪制成如圖統(tǒng)計圖表:根據(jù)以上提供的信息,解答下列問題:
節(jié)目 | 人數(shù)(名) | 百分比 |
最強(qiáng)大腦 | 5 | 10% |
朗讀者 | 15 | b% |
中國詩詞大會 | a | 40% |
出彩中國人 | 10 | 20% |
(1)x= ,a= ,b= ;
(2)補(bǔ)全上面的條形統(tǒng)計圖;
(3)在喜愛《最強(qiáng)大腦》的學(xué)生中,有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表學(xué)校參加濰坊市組織的競賽活動,請用樹狀圖或列表法求出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,⊙O是△ABC的外接圓, =,點(diǎn)D在邊BC上,AE∥BC,AE=BD.
(1)求證:AD=CE;
(2)如果點(diǎn)G在線段DC上(不與點(diǎn)D重合),且AG=AD,求證:四邊形AGCE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A.B.C分別是⊙O上的點(diǎn),∠B=60°,AC=3,CD是⊙O的直徑,P是CD延長線上的一點(diǎn),且AP=AC.
(1)求證:AP是⊙O的切線;
(2)求PD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點(diǎn)P,OF∥BC交AC于AC點(diǎn)E,交PC于點(diǎn)F,連接AF.
(1)判斷AF與⊙O的位置關(guān)系并說明理由;
(2)若⊙O的半徑為4,AF=3,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠B=600,CD是⊙O的直徑,點(diǎn)P是CD延長線上的一點(diǎn),且AP=AC.
(1)求證:PA是⊙O的切線;
(2)若PD=,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結(jié)論:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0,其中結(jié)論正確的是 .(填正確結(jié)論的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com