【題目】為了解某校中學(xué)生對(duì)《最強(qiáng)大腦》、《朗讀者》、《中國(guó)詩(shī)詞大會(huì)》、《出彩中國(guó)人》四個(gè)電視節(jié)目的喜愛(ài)情況,隨機(jī)抽取了x名學(xué)生進(jìn)行調(diào)查統(tǒng)計(jì)(要求每名學(xué)生選出并且只能選出一個(gè)自己最喜愛(ài)的節(jié)目),并將調(diào)查結(jié)果繪制成如圖統(tǒng)計(jì)圖表:根據(jù)以上提供的信息,解答下列問(wèn)題:

節(jié)目

人數(shù)(名)

 百分比

 最強(qiáng)大腦

 5

 10%

 朗讀者

 15

 b%

 中國(guó)詩(shī)詞大會(huì)

 a

 40%

 出彩中國(guó)人

 10

 20%

(1)x=   ,a=   ,b=   

(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖;

(3)在喜愛(ài)《最強(qiáng)大腦》的學(xué)生中,有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表學(xué)校參加濰坊市組織的競(jìng)賽活動(dòng),請(qǐng)用樹(shù)狀圖或列表法求出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.

【答案】(1)50;20;30;(2)見(jiàn)解析;(3);

【解析】

(1)根據(jù)最強(qiáng)大腦的人數(shù)除以占的百分比確定出x的值,進(jìn)而求出ab的值即可;
(2)根據(jù)a的值,補(bǔ)全條形統(tǒng)計(jì)圖即可;
(3)列出所有情況,即可看出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的情況,再用此情況數(shù)量除以所有情況數(shù)量即可.

1)根據(jù)題意得:x=5÷10%=50,a=50×40%=20,b=×100=30

故答案為:50;20;30

2)中國(guó)詩(shī)詞大會(huì)的人數(shù)為20人,補(bǔ)全條形統(tǒng)計(jì)圖,如圖所示:

3)∵52=3(名),

∴喜愛(ài)最強(qiáng)大腦的5名同學(xué)中,有3名男同學(xué),2名女同學(xué),

1

2

3

1

2

1

﹣﹣﹣

2,男1

3,男1

1,男1

2,男1

2

1,男2

﹣﹣﹣

3,男2

1,男2

2,男2

3

1,男3

2,男3

﹣﹣﹣

1,男3

2,男3

1

1,女1

2,女1

3,女1

﹣﹣﹣

2,女1

2

1,女2

2,女2

3,女2

1,女2

﹣﹣﹣

所有等可能的情況有20種,其中抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的情況有12種,

P(一男一女)==

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,等腰RtABC,等腰RtADEABAC,ADAE,AB=AC,AD=AE,CDAEBE分別于點(diǎn)M、F

1)求證:△DAC≌△EAB

2)若∠AEF=15°,EF=4,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,K是正方形ABCD內(nèi)一點(diǎn),以AK為一邊作正方形AKLM,使L,M,DAK的同旁,連接BKDM,試用旋轉(zhuǎn)的思想說(shuō)明線段BKDM的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,把矩形COAB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α角,得到矩形CFED.設(shè)FCAB交于點(diǎn)H,且A04),C8,0).

1)當(dāng)α=60°時(shí),CBD的形狀是______

2)設(shè)AH=m

①連接HD,當(dāng)CHD的面積等于10時(shí),求m的值;

②當(dāng)α90°旋轉(zhuǎn)過(guò)程中,連接OH,當(dāng)OHC為等腰三角形時(shí),請(qǐng)直接寫(xiě)出m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小王和小張利用如圖所示的轉(zhuǎn)盤(pán)做游戲,轉(zhuǎn)盤(pán)的盤(pán)面被分為面積相等的4個(gè)扇形區(qū)域,且分別標(biāo)有數(shù)字1,2,3,4.游戲規(guī)則如下:兩人各轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次,分別記錄指針停止時(shí)所對(duì)應(yīng)的數(shù)字,如兩次的數(shù)字都是奇數(shù),則小王勝;如兩次的數(shù)字都是偶數(shù),則小張勝;如兩次的數(shù)字是奇偶,則為平局.解答下列問(wèn)題:

(1)小王轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),當(dāng)轉(zhuǎn)盤(pán)指針停止,對(duì)應(yīng)盤(pán)面數(shù)字為奇數(shù)的概率是多少?

(2)該游戲是否公平?請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖①是一個(gè)重要公式的幾何解釋?zhuān)?qǐng)你寫(xiě)出這個(gè)公式;

(2)如圖②,Rt△ABC≌Rt△CDE,∠B=∠D=90°,且B、C、D三點(diǎn)在一條直線上.試證明∠ACE=90°;

(3)伽菲爾德(G a rfield,1881年任美國(guó)第20屆總統(tǒng))利用(1)中的公式和圖②證明了勾股定理(1876年4月1日,發(fā)表在《新英格蘭教育日志》上),現(xiàn)請(qǐng)你嘗試該證明過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市計(jì)劃購(gòu)進(jìn)甲、乙兩種商品,甲種商品的進(jìn)價(jià)比乙種商品的進(jìn)價(jià)每件多80元,若用720元購(gòu)進(jìn)甲種商品的件數(shù)與用360元購(gòu)進(jìn)乙種商品的件數(shù)相同.

1)求甲、乙兩種商品的進(jìn)價(jià)各是多少元?

2)已知甲種商品的售價(jià)為240/件,乙種商品的售價(jià)為130/件,若超市銷(xiāo)售甲、乙兩種商品共80件,其中銷(xiāo)售甲種商品為件(),設(shè)銷(xiāo)售完80件甲、乙兩種商品的總利潤(rùn)為元,求之間的函數(shù)關(guān)系式,并求出的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為8的正方形ABCD中,點(diǎn)OAD上一動(dòng)點(diǎn)(4OA8),以O為圓心,OA的長(zhǎng)為半徑的圓交邊CD于點(diǎn)E,連接OE、AE,過(guò)點(diǎn)E作⊙O的切線交邊BCF

1)求證:ODE∽△ECF;

2)在點(diǎn)O的運(yùn)動(dòng)過(guò)程中,設(shè)DE=

①求的最大值,并求此時(shí)⊙O的半徑長(zhǎng);

②判斷CEF的周長(zhǎng)是否為定值,若是,求出CEF的周長(zhǎng);否則,請(qǐng)說(shuō)明理由?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,∠A=∠C,點(diǎn)DAC上,點(diǎn)EBC上,AD=CE,BCDC

1)求證:DBDE

2)如圖2,若∠ABC90°,求∠BED的度數(shù);

查看答案和解析>>

同步練習(xí)冊(cè)答案