【題目】在矩形中,已知,在邊上取點(diǎn),使,連結(jié),過(guò)點(diǎn),與邊或其延長(zhǎng)線(xiàn)交于點(diǎn)

猜想:如圖,當(dāng)點(diǎn)在邊上時(shí),線(xiàn)段的大小關(guān)系為

探究:如圖,當(dāng)點(diǎn)在邊的延長(zhǎng)線(xiàn)上時(shí),與邊交于點(diǎn).判斷線(xiàn)段的大小關(guān)系,并加以證明.

應(yīng)用:如圖,若利用探究得到的結(jié)論,求線(xiàn)段的長(zhǎng).

【答案】猜想:AF=DE;探究:AF=DE;應(yīng)用:BG=

【解析】

試題分析:先猜想,再根據(jù)垂直的意義和矩形的性質(zhì)證明△AEF≌△DCE即可說(shuō)明AF=DE;然后可根據(jù)圖形結(jié)合題意可求得AF=3,BF=1,然后用平行線(xiàn)的性質(zhì),證明△FBG∽△FAE,再根據(jù)相似三角形的對(duì)應(yīng)邊成比例求得結(jié)果.

試題解析:猜想:AF=DE

探究:AF=DE

證明:∵EF⊥CE

∴∠CEF=90°

∴∠1+∠2=90°

四邊形ABCD為矩形

∴∠A=∠D=90°,AB=CD

∴∠2+∠3=90°

∴∠1=∠3

∵AE=AB,

∴AE=DC

∴△AEF≌△DCE

∴AF=DE

應(yīng)用:∵AF=DE=AD-AE=5-2=3

∴BF=AF-AB=3-2=1

在矩形ABCD中,AD∥BC

∴△FBG∽△FAE

∴BG=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】元旦期間,某超市銷(xiāo)售兩種不同品牌的蘋(píng)果,已知1千克甲種蘋(píng)果和1千克乙種蘋(píng)果的進(jìn)價(jià)之和為18元.當(dāng)銷(xiāo)售1千克甲種蘋(píng)果和1千克乙種蘋(píng)果利潤(rùn)分別為4元和2元時(shí),陳老師購(gòu)買(mǎi)3千克甲種蘋(píng)果和4千克乙種蘋(píng)果共用82元.

(1)求甲、乙兩種蘋(píng)果的進(jìn)價(jià)分別是每千克多少元?

(2)在(1)的情況下,超市平均每天可售出甲種蘋(píng)果100千克和乙種蘋(píng)果140千克,若將這兩種蘋(píng)果的售價(jià)各提高1元,則超市每天這兩種蘋(píng)果均少售出10千克,超市決定把這兩種蘋(píng)果的售價(jià)提高x元,在不考慮其他因素的條件下,使超市銷(xiāo)售這兩種蘋(píng)果共獲利960元,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠(chǎng)家生產(chǎn)一種新型電子產(chǎn)品,制造時(shí)每件的成本為40元,通過(guò)試銷(xiāo)發(fā)現(xiàn),銷(xiāo)售量萬(wàn)件與銷(xiāo)售單價(jià)之間符合一次函數(shù)關(guān)系,其圖象如圖所示.

yx的函數(shù)關(guān)系式;

物價(jià)部門(mén)規(guī)定:這種電子產(chǎn)品銷(xiāo)售單價(jià)不得超過(guò)每件80元,那么,當(dāng)銷(xiāo)售單價(jià)x定為每件多少元時(shí),廠(chǎng)家每月獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的直徑AB6,AMBN是⊙O的兩條切線(xiàn),點(diǎn)DAM上一點(diǎn),連接OD,作BEOD交⊙O于點(diǎn)E,連接DE并延長(zhǎng)交BN于點(diǎn).

1)求證:DC是⊙O的切線(xiàn);

2)設(shè)ADx,BCy.求yx的函數(shù)關(guān)系式(不要求寫(xiě)出自變量的取值范圍)

3)若AD1,連接AE并延長(zhǎng)交BCF,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,拋物線(xiàn)y=﹣(x+1)2+4與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C.

(1)寫(xiě)出拋物線(xiàn)頂點(diǎn)D的坐標(biāo)   

(2)點(diǎn)D1是點(diǎn)D關(guān)于y軸的對(duì)稱(chēng)點(diǎn),判斷點(diǎn)D1是否在直線(xiàn)AC上,并說(shuō)明理由;

(3)若點(diǎn)E是拋物線(xiàn)上的點(diǎn),且在直線(xiàn)AC的上方,過(guò)點(diǎn)E作EF⊥x軸交線(xiàn)段AC于點(diǎn)F,求線(xiàn)段EF的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=2,點(diǎn)E在邊AD上,ABE=45°,BE=DE,連接BD,點(diǎn)P在線(xiàn)段DE上,過(guò)點(diǎn)P作PQBD交BE于點(diǎn)Q,連接QD.設(shè)PD=x,PQD的面積為y,則能表示y與x函數(shù)關(guān)系的圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的弦,過(guò)AB的中點(diǎn)EECOA,垂足為C,過(guò)點(diǎn)B作直線(xiàn)BDCE的延長(zhǎng)線(xiàn)于點(diǎn)D,使得DB=DE.

(1)求證:BD是⊙O的切線(xiàn);

(2)若AB=12,DB=5,求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)口袋中有4個(gè)完全相同的小球,把它們分別標(biāo)上數(shù)字﹣1,01,2,隨機(jī)的摸出一個(gè)小球記錄數(shù)字然后放回,在隨機(jī)的摸出一個(gè)小球記錄數(shù)字.求下列事件的概率:

1)兩次都是正數(shù)的概率PA);

2)兩次的數(shù)字和等于0的概率PB).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO的直徑,過(guò)點(diǎn)BO的切線(xiàn)BM,弦CD//BM,交AB于點(diǎn)F,且,連接AC,AD,延長(zhǎng)ADBM于點(diǎn)E.

l)求證:△ACD是等邊三角形;

2)連接OE,若DE2,求OE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案