【題目】如圖,⊙O的直徑AB=6,AM,BN是⊙O的兩條切線,點(diǎn)D是AM上一點(diǎn),連接OD,作BE∥OD交⊙O于點(diǎn)E,連接DE并延長(zhǎng)交BN于點(diǎn).
(1)求證:DC是⊙O的切線;
(2)設(shè)AD=x,BC=y.求y與x的函數(shù)關(guān)系式(不要求寫(xiě)出自變量的取值范圍)
(3)若AD=1,連接AE并延長(zhǎng)交BC于F,求EF的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)y=;(3)EF=.
【解析】
(1)證明△OAD≌△OED(SAS),即可求解;
(2)利用OC2=(OBsinα+BCcosα)2=OB2+BC2,即可求解;
(3)在Rt△AOD中,tanα=,則cosα=,在等腰三角形△EFC中,EF=2ECcosα,即可求解.
(1)連接OE,
∵BE∥OD,∴∠AOD=∠ABE=∠OEB=∠DOE=∠α,
AO=OE,OD=OD,
∴△OAD≌△OED(SAS),
∴∠OED=∠OAD=90°,
∴DC是⊙O的切線;
(2)連接OC,
∵DC是⊙O的切線,
∴BE⊥OC,
∠OBE=∠OCB=α,
在Rt△AOD中,tanα=,則sinα=,cosα=,
OC2=(OBsinα+BCcosα)2=OB2+BC2,
其中OB=3,BC=y,代入上式并整理得:y=;
(3)∵AM∥BN,
∴∠MAF=∠AFN=α,而∠DAE=∠DEA=α,
∴∠CEF=∠CFE=α,
由(2)知,當(dāng)x=1時(shí),y=9,
即:AD=AE=1,EC=CF=9,
在Rt△AOD中,tanα=,則cosα=,
在等腰三角形△EFC中,
EF=2ECcosα=2×9×=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠B=60°,BC=3,D為BC邊上的三等分點(diǎn),BD=2CD,E為AB邊上一動(dòng)點(diǎn),將△DBE沿DE折疊到△DB′E的位置,連接AB′,則線段AB′的最小值為:___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形紙片中,對(duì)角線、交于點(diǎn),折疊正方形紙片,使落在上,點(diǎn)恰好與上的點(diǎn)重合.展開(kāi)后,折痕分別交、于點(diǎn)、.連接.下列結(jié)論:①;②;③;④四邊形是菱形;⑤.
其中正確結(jié)論的序號(hào)是( 。
A. ①②③④⑤B. ①②③④C. ①③④⑤D. ①④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,點(diǎn)A到直線BC的距離為d,AB>AC>d,以A為圓心,AC為半徑畫(huà)圓弧,圓弧交直線BC于點(diǎn)D,過(guò)點(diǎn)D作DE∥AC交直線AB于點(diǎn)E,若BC=4,DE=1,∠EDA=∠ACD,則AD=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,以AD為對(duì)角線作正方形AEDF,DE交AB于點(diǎn)M,DF交AC于點(diǎn)N,連結(jié)EF,EF分別交AB、AD、AC于點(diǎn)G、點(diǎn)O、點(diǎn)H.
(1)求證:EG=HF;
(2)當(dāng)∠BAC=60°時(shí),求的值;
(3)設(shè),△AEH和四邊形EDNH的面積分別為S1和S2,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=2x與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)A(4,n),AB⊥x軸,垂足為B.
(1)求k的值;
(2)點(diǎn)C在AB上,若OC=AC,求AC的長(zhǎng);
(3)點(diǎn)D為x軸正半軸上一點(diǎn),在(2)的條件下,若S△OCD=S△ACD,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形中,已知,在邊上取點(diǎn),使,連結(jié),過(guò)點(diǎn)作,與邊或其延長(zhǎng)線交于點(diǎn).
猜想:如圖①,當(dāng)點(diǎn)在邊上時(shí),線段與的大小關(guān)系為 .
探究:如圖②,當(dāng)點(diǎn)在邊的延長(zhǎng)線上時(shí),與邊交于點(diǎn).判斷線段與的大小關(guān)系,并加以證明.
應(yīng)用:如圖②,若利用探究得到的結(jié)論,求線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一元二次方程x2﹣4x+k=0有兩個(gè)不相等的實(shí)數(shù)根
(1)求k的取值范圍;
(2)如果k是符合條件的最大整數(shù),且一元二次方程x2﹣4x+k=0與x2+mx﹣1=0有一個(gè)相同的根,求此時(shí)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某產(chǎn)品每件成本10元,試銷階段每件產(chǎn)品的銷售價(jià)(元)與產(chǎn)品日銷售量(元)間的關(guān)系如下:
(元) | … | 12 | 15 | 18 | 21 | 24 | … |
(件) | … | 28 | 25 | 22 | 19 | 16 | … |
日銷售量是銷售價(jià)的一次函數(shù).
(1)求出日銷售量(件)與銷售量(元)的函數(shù)關(guān)系式.
(2)要使每日的銷售利潤(rùn)200元,每件產(chǎn)品的銷售應(yīng)定為多少元?進(jìn)貨成本多少元?
(3)選作:要使每日的銷售的利潤(rùn)最大,每件產(chǎn)品的銷售價(jià)應(yīng)定為多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com